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Why Client Metadata Writeback Caching for Lustre?

►Cache is the key for good performance
• Page Cache
• Inode Cache
• Dentry Cache

►Data is well cached in Lustre
• Page cache for both data writing and reading

►No cache for changing metadata
• Each metadata modification goes to MDT

► Metadata performance is important
• Applications create a lot more files 
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Current Data Cache/Acceleration Inside Lustre

►Persistent Client Cache
• Local storage on clients for read-only or exclusive files

► Lustre on Demand to cache file sets of jobs
• Quicker client networks and storage for running jobs

►Data on MDT for data acceleration
• Less RPC and quick MDT for small files

►OST pool on SSD for cache
• Quicker OSTs for hot data

►Data reads/writes are fully cached
• LDLM lock protects data consistency
• Page level cache management

►Metadata needs acceleration too!
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Main Targets of Lustre WBC

►Client-side cache instead of server-side
• Pros: higher acceleration caused by metadata locality
• Cons: complex mechanisms to keep consistency

►Delayed and grouped metadata flush instead of immediate RPC to MDS
• Pros: much less MDS intervention for better performance
• Cons: complex mechanisms of batched flush and space/inode reservation

►Cache in volatile memory instead of persistent storage
• Pros: quickest storage type
• Cons: complex mechanisms to reduce risk of data loss

►Keeping strong POSIX semantics instead of loosening semantics
• Pros: transparent acceleration for all applications
• Cons: complex LDLM lock protection
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General Idea of Lustre WBC
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Design of Lustre WBC (1)

►Directory tree will decide whether to be cached in WBC based on policy when being 
created
• User defined rules based on UID/GID/ProjID/fname and their combinations
• projid={100 200}&gid={1000},uid={500}
• fname={*.local_dir}
• Protect the client exclusive access to the entire directory subtree

►Exclusive LDLM lock will be held for root inode of cached directory tree
• Data/Metada can be then cached safely

►All local modification in the directory tree will be cached
• Data will be cached in page cache
• Metadata (inodes/dentries) will be cached in memory too
• No RPC to MDS/OSS at all
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Design of Lustre WBC (2)

►WBC uses data structure with name of MemFS for cache management
• Works like Ramfs/Tmpfs but managed by Lustre
• MemFS manages cached data & metadata
• MemFS uses inode/dentry/page cache in VFS

►Data and metadata flush happens when:
• Access of the directory tree from remote clients
• Memory pressure on local host
• Periodic auto-flush

►Quick flush from MemFS to MDTs
• Metadata flushing will use bulk RPC for batched flush
• Only flush or degrade part of the directory tree rather than whole of it
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Components in Lustre WBC
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State Flags of Cached Files/Directories in WBC 

►WBC-Root: Root of the cached directory tree
• The exclusive LDLM lock of the tree is being held for this directory

►WBC-Protected: File is protected by an exclusive LDLM lock (directly or indirectly)
• WBC-Root directory is always WBC-Protected
• Files under WBC-Root directory are WBC-Protected indirectly

►WBC-Cached: The children under this directory are fully cached in MemFS
• Controls whether the metadata operations of the file/dir go to MemFS or MDS

►WBC-Flushed: Metadata has been flushed from MemFS to MDS
• WBC-Root directory is always WBC-Flushed

►WBC-Assimilated: Page cache of the file has been assimilated from MemFS to Lustre
OSC

►WBC-None: None of the above flags is set for normal Lustre files
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Operations to Change WBC States

►WBC-Purge: purge the WBC-Root from the WBC
• Happens when remote client access the WBC-Root
• WBC-Root flushes metadata, releases exclusive LDLM lock and becomes normal Lustre directory
• The child directories get exclusive LDLM locks and becomes WBC-Roots

►WBC-Assimilate: assimilate the data from WBC to normal page cache of Lustre
• Happens when need to release memory from cache
• Metadata of the file and its ancestors need to be flushed first
• Data is still in page cache of Lustre client, not flushed to OSS yes

►WBC-Flush: flush the directory from WBC to MDS and not fully cached any more
• Happens when need to create a file under the directory but do not have more memory to cache
• Renaming or creating hardlinks will also trigger WBC-Flush to simplify implementation
• This directory and its children needs to be flushed back to MDS and remove the WBC-Cached flags
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State Transitions in Different Cases

Tree in WBC & Flushed to MDS Tree in WBC & Not Flushed to MDSNormal Lustre Tree

WBC-Assimilating File Data (OOM)

WBC-Purging root (Remote Access)

WBC-Flushing Metadata Data (OOM)
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State Transition when WBC-Purging the WBC-Root

Remote access of /a ---> WBC-Purge /a/b/c

/a
Root | Protected | Complete | Flushed

/a/b
Protected | Cached 

/a/c
Protected | Cached

/a/d
Protected | Cached

/a
None1

/a/b
Protected | Cached | Root | Flushed

2

/a/c
Protected | Cached | Root | Flushed

3

/a/d
Protected | Cached | Root | Flushed

4

Flags: Newly Added Flags



whamcloud.com

State Transition when WBC-Flushing a Directory

OOM when creating /a/b/c/e on MemFS ---> WBC-Flush /a/b/c

/a
Root | Protected | Cached | Flushed

/a
Root | Protected | Cached | Flushed

/a/b
Protected | Cached 

/a/b/c
Protected | Cached

/a/b/c/d
Protected | Cached

/a/b
Protected| Cached |Flushed 1

/a/b/c
Protected X             X |Flushed2 4

/a/b/c/d
Protected | X             X | Flushed 3

Flag: Removed Flags
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State Transition when WBC-Assimilating File Data

Assimilate Data of /a/b/c/d

/a
Root | Protected | Cached | Flushed

/a/b
Protected | Cached

/a/b/c
Protected | Cached

/a/b/c/d
Protected | Cached

/a
Root | Protected | Cached | Flushed

/a/b
Protected | Cached | Flushed 1

/a/b/c
Protected | Cached | Flushed 2

/a/b/c/d
Protected | Cached | Flushed | Assimilated

3
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Features and Advantages of WBC

►WBC flushes metadata of files in batch
• > 1000 updates on files in a single bulk RPC

►Batch operations of metadata can be used to delete a whole directory
• Accelerates “rm -fr” a lot

►WBC aggregates metadata updates
• Only the final state of metadata will be flushed to MDS
• create() + chattr() + chmod() + unlink() = No RPC to MDS 

►WBC can be integrated with PCC
• Data will still be cached in PCC after WBC-Assimilation
• Cache more data on client
•More memory for metadata caching

►Possible offline/disconnected operations on Lustre client 
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Untar Performance of WBC Against Other File Systems

Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre client: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8
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Metadata Performance of WBC Against Network File Systems
Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre client: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8
Benchmark Commands: mdtest -n 200000 -d $DIR 
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Metadata Performance of WBC Against Local File Systems
Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre client: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8
Benchmark Commands: mdtest -n 200000 -d $DIR 
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