
Li Xi
Yingjin Qian

Lustre Client Metadata Writeback Caching:
Design and Implementation

whamcloud.com

Why Client Metadata Writeback Caching for Lustre?

►Cache is the key for good performance
• Page Cache
• Inode Cache
• Dentry Cache

►Data is well cached in Lustre
• Page cache for both data writing and reading

►No cache for changing metadata
• Each metadata modification goes to MDT

► Metadata performance is important
• Applications create a lot more files

CPU
Cache

DDR DRAM

Persistent Memory

NAND SSD

Hard Disk Drives

Tape

CPU Register

Co
st

($
/G

B)
 Latency

0.1ns

1-10ns

80-100ns

<1us

~10ms

10-100ns

~100ms

Capacity

whamcloud.com

Current Data Cache/Acceleration Inside Lustre

►Persistent Client Cache
• Local storage on clients for read-only or exclusive files

► Lustre on Demand to cache file sets of jobs
• Quicker client networks and storage for running jobs

►Data on MDT for data acceleration
• Less RPC and quick MDT for small files

►OST pool on SSD for cache
• Quicker OSTs for hot data

►Data reads/writes are fully cached
• LDLM lock protects data consistency
• Page level cache management

►Metadata needs acceleration too!

OST
OST

OSTs
OST

OST
OSTs

Quick OST Pool Based on SSD

OST
OST

OSTs
OST

OST
OSTs

OST Pool Based on HDD

Client

Lustre on Demand

Client Client Client

Persistent Client Cache

Client Client

Attach/DetachStage-in/out

Data on
MDTData on

MDT

Same Namespace

whamcloud.com

Main Targets of Lustre WBC

►Client-side cache instead of server-side
• Pros: higher acceleration caused by metadata locality
• Cons: complex mechanisms to keep consistency

►Delayed and grouped metadata flush instead of immediate RPC to MDS
• Pros: much less MDS intervention for better performance
• Cons: complex mechanisms of batched flush and space/inode reservation

►Cache in volatile memory instead of persistent storage
• Pros: quickest storage type
• Cons: complex mechanisms to reduce risk of data loss

►Keeping strong POSIX semantics instead of loosening semantics
• Pros: transparent acceleration for all applications
• Cons: complex LDLM lock protection

whamcloud.com

General Idea of Lustre WBC

MDS

Normal Lustre Tree

Tree Cached Locally

Tree not Flushed to MDS yet

Lustre Client

Batched & Delayed & Aggregated
Metadata Flush

Lustre Client

whamcloud.com

Design of Lustre WBC (1)

►Directory tree will decide whether to be cached in WBC based on policy when being
created
• User defined rules based on UID/GID/ProjID/fname and their combinations
• projid={100 200}&gid={1000},uid={500}
• fname={*.local_dir}
• Protect the client exclusive access to the entire directory subtree

►Exclusive LDLM lock will be held for root inode of cached directory tree
• Data/Metada can be then cached safely

►All local modification in the directory tree will be cached
• Data will be cached in page cache
• Metadata (inodes/dentries) will be cached in memory too
• No RPC to MDS/OSS at all

whamcloud.com

Design of Lustre WBC (2)

►WBC uses data structure with name of MemFS for cache management
• Works like Ramfs/Tmpfs but managed by Lustre
• MemFS manages cached data & metadata
• MemFS uses inode/dentry/page cache in VFS

►Data and metadata flush happens when:
• Access of the directory tree from remote clients
• Memory pressure on local host
• Periodic auto-flush

►Quick flush from MemFS to MDTs
• Metadata flushing will use bulk RPC for batched flush
• Only flush or degrade part of the directory tree rather than whole of it

whamcloud.com

Components in Lustre WBC

PCC on
Local FS

VFS

Page Cache

MemFS

LDLM

Cache Policy of WBC

MDC

PCC interface of WBCInode Cache

Dentry Cache

MDS/OSS

LDLM Lock ReclaimData & Metadata Flush

whamcloud.com

State Flags of Cached Files/Directories in WBC

►WBC-Root: Root of the cached directory tree
• The exclusive LDLM lock of the tree is being held for this directory

►WBC-Protected: File is protected by an exclusive LDLM lock (directly or indirectly)
• WBC-Root directory is always WBC-Protected
• Files under WBC-Root directory are WBC-Protected indirectly

►WBC-Cached: The children under this directory are fully cached in MemFS
• Controls whether the metadata operations of the file/dir go to MemFS or MDS

►WBC-Flushed: Metadata has been flushed from MemFS to MDS
• WBC-Root directory is always WBC-Flushed

►WBC-Assimilated: Page cache of the file has been assimilated from MemFS to Lustre
OSC

►WBC-None: None of the above flags is set for normal Lustre files

whamcloud.com

Operations to Change WBC States

►WBC-Purge: purge the WBC-Root from the WBC
• Happens when remote client access the WBC-Root
• WBC-Root flushes metadata, releases exclusive LDLM lock and becomes normal Lustre directory
• The child directories get exclusive LDLM locks and becomes WBC-Roots

►WBC-Assimilate: assimilate the data from WBC to normal page cache of Lustre
• Happens when need to release memory from cache
• Metadata of the file and its ancestors need to be flushed first
• Data is still in page cache of Lustre client, not flushed to OSS yes

►WBC-Flush: flush the directory from WBC to MDS and not fully cached any more
• Happens when need to create a file under the directory but do not have more memory to cache
• Renaming or creating hardlinks will also trigger WBC-Flush to simplify implementation
• This directory and its children needs to be flushed back to MDS and remove the WBC-Cached flags

whamcloud.com

State Transitions in Different Cases

Tree in WBC & Flushed to MDS Tree in WBC & Not Flushed to MDSNormal Lustre Tree

WBC-Assimilating File Data (OOM)

WBC-Purging root (Remote Access)

WBC-Flushing Metadata Data (OOM)

whamcloud.com

State Transition when WBC-Purging the WBC-Root

Remote access of /a ---> WBC-Purge /a/b/c

/a
Root | Protected | Complete | Flushed

/a/b
Protected | Cached

/a/c
Protected | Cached

/a/d
Protected | Cached

/a
None1

/a/b
Protected | Cached | Root | Flushed

2

/a/c
Protected | Cached | Root | Flushed

3

/a/d
Protected | Cached | Root | Flushed

4

Flags: Newly Added Flags

whamcloud.com

State Transition when WBC-Flushing a Directory

OOM when creating /a/b/c/e on MemFS ---> WBC-Flush /a/b/c

/a
Root | Protected | Cached | Flushed

/a
Root | Protected | Cached | Flushed

/a/b
Protected | Cached

/a/b/c
Protected | Cached

/a/b/c/d
Protected | Cached

/a/b
Protected| Cached |Flushed 1

/a/b/c
Protected X X |Flushed2 4

/a/b/c/d
Protected | X X | Flushed 3

Flag: Removed Flags

whamcloud.com

State Transition when WBC-Assimilating File Data

Assimilate Data of /a/b/c/d

/a
Root | Protected | Cached | Flushed

/a/b
Protected | Cached

/a/b/c
Protected | Cached

/a/b/c/d
Protected | Cached

/a
Root | Protected | Cached | Flushed

/a/b
Protected | Cached | Flushed 1

/a/b/c
Protected | Cached | Flushed 2

/a/b/c/d
Protected | Cached | Flushed | Assimilated

3

whamcloud.com

Features and Advantages of WBC

►WBC flushes metadata of files in batch
• > 1000 updates on files in a single bulk RPC

►Batch operations of metadata can be used to delete a whole directory
• Accelerates “rm -fr” a lot

►WBC aggregates metadata updates
• Only the final state of metadata will be flushed to MDS
• create() + chattr() + chmod() + unlink() = No RPC to MDS

►WBC can be integrated with PCC
• Data will still be cached in PCC after WBC-Assimilation
• Cache more data on client
•More memory for metadata caching

►Possible offline/disconnected operations on Lustre client

whamcloud.com

Untar Performance of WBC Against Other File Systems

Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre client: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8

Se
co

nd
s

0.7 1.3

315

82

94.8 4.8

308

81

10
0

50

100

150

200

250

300

350

Tmpfs Ext4 NFS Lustre Lustre on WBC

Time Cost of Decompressing Linux Kernel Source Code Tarball

tar tar.gz

whamcloud.com

Metadata Performance of WBC Against Network File Systems
Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre client: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8
Benchmark Commands: mdtest -n 200000 -d $DIR

1,941 3,837

370,981

11,039 6,518

767,049

4,991 5,671

505,199

2,197 6,608

456,030

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000

NFS Lustre Lustre WBC

Metadata Performance of WBC Against Network File Systems

File Creation File Stat File Read File Removal

x about 100 times

whamcloud.com

Metadata Performance of WBC Against Local File Systems
Lustre: DDN AI400X Appliance (20 X SAMSUNG 3.84TB NVMe, 4X IB-HDR100)
Lustre client: Intel Gold 5218 processor, 96 GB DDR4 RAM, CentOS 8.1
Local File System on SSD: Intel SSDSC2KB240G8
Benchmark Commands: mdtest -n 200000 -d $DIR

577,230

972,485

676,166 688,726

129,114

995,912

622,071

208,345

370,981

767,049

505,199
456,030

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

File Creation File Stat File Read File Removal

Metadata Performance of WBC Against Local File Systems

Tmpfs Ext4(SSD) Lustre WBC

x 64%

x 79%
x 75%

x 66%

Thank you!

