
Lustre & Small I/O:

Size does matter (Unfortunately)

LAD 2017 Copyright 2017 Cray Inc.
1

Small I/O

● Very hard to offer good performance for small I/O
● 'Small' is anything less than various natural

boundaries – RPC size is a notable one
● The smaller the I/O, the worse the performance
● Natural minimum I/O size is 1 page, anything smaller

can be especially bad

LAD 2017 Copyright 2017 Cray Inc.
2

Why is it so bad?

● Client side per I/O overhead

● Much worse on Lustre than local fileystems

● Lots of work done regardless of I/O size

● Locking, cache management, etc, really adds up
● No obvious pain points – Death by a thousand cuts
● Network costs per I/O
● Disk hardware limits (small I/Os terrible for spinning

disk, not good for flash)

LAD 2017 Copyright 2017 Cray Inc.
3

What do we do for small I/O now?

● Re-use LDLM locks (most I/Os already have required lock)
● Sequential:

● Read ahead and write aggregation
● Avoid small I/Os over network/to disk
● Still have to process small I/Os on client

● Random

● Tell people “Please don't do that.”

● Direct I/O (Lower locking overhead)

LAD 2017 Copyright 2017 Cray Inc.
4

Reads

● Readahead: Read more data than asked for

● Guarantees large I/O

● Could be better if more asynchronous (Tough,
though: See LU-8964)

● Per I/O overhead still bad for small reads

● ‘Fast Reads’ - Really clever idea, Jinshan Xiong
(Intel)

LAD 2017 Copyright 2017 Cray Inc.
5

Fast Reads

● Read overhead is mostly to guarantee pages are
present & verify locking

● But if a page is present and up to date, it must be
locked correctly

● So just read pages directly from page cache (minimal
interaction with Lustre)

● Really, really fast. Improves large & small I/O.
● Still a bit more overhead to squeeze out: LU-9749

(landed)

LAD 2017 Copyright 2017 Cray Inc.
6

Read Performance vs I/O Size

LAD 2017 Copyright 2017 Cray Inc.
7

8 64 1024 4096 1 MiB
0

1000

2000

3000

4000

5000

6000

7000

8000

Read Performance vs Local FS

Lustre
Lustre – Cached
Local - Cached

Data (Bytes)

M
B

/s

Writes

● Writes are harder – Pages are usually created by
writing, so not already present

● Must update file size
● Out of space (grant) issues
● OSC layer must know about dirty pages for writeout
● If a dirty page is present, we know this is handled

already. Can we use that...?

LAD 2017 Copyright 2017 Cray Inc.
8

Tiny Writes

● Except for really small (< 1 page) sequential writes
● If writing a few bytes at a time, dirty page will usually

be present
● Hence, tiny writes:

When a write is < 1 page in size and page is already
dirty, write directly to that page without cl_io

● Have to update file size, HSM dirty state
● LU-9409 – Not landed yet.

LAD 2017 Copyright 2017 Cray Inc.
9

Write Performance vs I/O Size

LAD 2017 Copyright 2017 Cray Inc.
10

Bytes
Lustre Lustre + Tiny

Writes
Local

8 2.3 MB/s 12 MB/s 22 MB/s

64 19 MB/s 90 MB/s 171 MB/s

1024 245 MB/s 370 MB/s 1400 MB/s

4096 635 MB/s 635 MB/s 2500 MB/s

1 MiB 1100 MB/s 1100 MB/s 2900 MB/s

Write Performance vs I/O Size

LAD 2017 Copyright 2017 Cray Inc.
11

8 64 1024 4096 1 MiB
0

500

1000

1500

2000

2500

3000

3500

Write Performance vs Local FS

Lustre
Lustre - Tiny Writes
Local

Data (Bytes)

M
B

/s

Partial Page Writes 1: Readahead

● Overwriting a file at small sizes is painful
● Have to read in each page before writing it
● Shared file writing also counts as overwriting – can't

know pages are empty
● Read in one page at a time... Very slow.
● Use readahead!
● LU-9618: Partial page readahead (PPR, Patrick

F./Jinshan) – Not landed yet

LAD 2017 Copyright 2017 Cray Inc.
12

Write Performance with PPR

LAD 2017 Copyright 2017 Cray Inc.
13

Bytes
New file Overwrite Overwrite

+ PPR
Shared file
(4 Writers)

Shared
file+PPR

1KiB 250 MB/s 13 MB/s 170 MB/s 65 MB/s 520 MB/s

5KiB 692 MB/s 30 MB/s 400 MB/s 114 MB/s 1100 MB/s

Write Performance with PPR

LAD 2017 Copyright 2017 Cray Inc.
14

1 KiB 5 KiB
0

200

400

600

800

1000

1200

Write with Partial Page Readahead

New File
Overwrite
Overwrite + PPR
Shared File (4)
Shared File + PPR

Data

M
B

/s

Partial Page Writes 2: Extent Awareness

● Shared file writing of a new file could be better still
● Not overwriting, so no data in those pages – we know this, but

Lustre/VFS doesn't
● Rough sketch:

Client tracks size reported by server when write lock granted
Pages > than that size that this client didn't write haven't been
written to & don't need to be read
Could use osc_extent to track this, extents would have to live
as long as their covering LDLM write lock (not only as long as
their underlying pages – pages could be evicted)

LAD 2017 Copyright 2017 Cray Inc.
15

Partial Page Writes 2: Extent Awareness

● Mostly applicable to single client shared file (but would
help some for multiple clients)

● Rough calculations (comparing to 4K shared file
writes) suggest ~20% benefit for 5K

● Expect up to double that for 2K and smaller
● Probably not worth the time. Maybe some day.

LAD 2017 Copyright 2017 Cray Inc.
16

Write Containers

● Tiny writes are very limited in applicability, can we do
better?

● Write containers (Jinshan Xiong, Intel)
● Prepare many per I/O items in advance and/or do them

in a batch (Ex.: Locking, grant, dirty page tracking)
● Design stage only, Jinshan is looking for volunteers
● Expect improvements of several times for smaller I/O
● Reduced contention for shared file I/O
● Only benefits sequential I/O, adds complexity

LAD 2017 Copyright 2017 Cray Inc.
17

Small Random I/O

● Can't do readahead
● Can't batch at all to disk
● Yuck.
● We do batch writes at RPC layer, benefit is significant
● Flash on servers helps a lot here (Spinning disk

random IOPs are... bad.)

LAD 2017 Copyright 2017 Cray Inc.
18

It's all about Latency

● If you can't batch I/O, then do it as fast as possible
● Lustre latency is still death by a thousand cuts, but

some things help
● Direct I/O is slightly better than buffered I/O (less

locking)
● LU-1757 – Immediate short I/O (Alex Boyko, refreshed

by Patrick F.) [Not landed yet...]

LAD 2017 Copyright 2017 Cray Inc.
19

LU-1757: Immediate Short I/O

● RPC required to set up RDMA for bulk transfer
● For small transfers, extra round trip is worse than

larger non-RDMA message
● Ergo, put small I/Os in to buffer in RPC
● Straightforward, but limited benefit
● About 30% on 4K reads on Cray Aries to flash (Slower

network would give a larger benefit)
● Too small to measure on writes (Most time spent in

journaling)

LAD 2017 Copyright 2017 Cray Inc.
20

Summary

● Small I/O stinks. Random small I/O really stinks.
● Sequential: Reads are good, writes are bad

Tiny writes (LU-9409)
Partial page readahead (LU-9618)
Write Containers

● Random:
Immediate short I/O (LU-1757)

LAD 2017 Copyright 2017 Cray Inc.
21

What next?

● Sequential:
Review & landing existing patches
Write Containers
Async readahead

● Random writes:
Journaling – Can we make this faster?

LAD 2017 Copyright 2017 Cray Inc.
22

One more thing...

● Conflicting small I/O is particularly horrible, LDLM latency
● Small improvement possible:

LU-4198: Lockless direct I/O
● Client LDLM locking not strictly necessary for direct I/O,

since there are no pages to protect
● Not much use in non-conflicting case
● LU-247: Unaligned direct I/O (very old, complex) – Could

improve the range of workloads benefiting from LU-4198

LAD 2017 Copyright 2017 Cray Inc.
23

	Agenda
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23

