
Lustre	Performance	on	KNL	

Single	Shared	File	I/O	
Locking	primi=ves	

KNL: Slow.
•  What does slow mean?
•  Single process throughput ~300 MB/s
•  Limited by copy rate between userspace

and kernel (same limit as on Xeon, but
Xeon is ~1.3 Gb/s)

•  “full packed” nodes also very slow due to
contention

•  Moderate process counts are OK

KNL: Slow.
•  What can we do?
•  Many processes: Address contention
•  Single process: ‘copy’ operation already

in assembly
•  Very difficult to parallelize in kernel, ask

me for details of early attempts
•  Parallelize outside of kernel – Split I/O

between multiple processes in userspace

KNL: Slow.
•  Quick note on goals: 

Cray compute nodes are limited to ~5.5
GB/s, so we don’t overwhelm downstream
network in big systems

•  At ~4 GB/s here, possible NUMA issues
•  Gregoire is aiming higher (8-10 GB/s),

sees some different problems

Single shared file I/O
•  Always important; particularly interesting

on KNL because individual cores are so
slow

•  All of this is single node
•  Current master: Reading is OK until higher

thread counts, writing is bad at > 1 rank
•  A quick digression on that…

Single shared file I/O - Writing
•  Much better in earlier versions (2.5-)
•  Found RPC sizes were often small, even

with large, well formed I/O from IOR
•  LU-8515 – Do a better job of picking

extents to send
•  Results in well formed I/O, good

performance, details in ticket
•  All benchmarks are with that patch.

Performance: KNL SSF

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

1	 2	 4	 8	 16	 32	 64	

M
B	
pe

r	s
ec
on

d	

Threads	

KNL	SSF	

READ	

DIRECT	READ	

WRITE	

WRITE	-	Projected	

Performance: KNL FPP

0	

1000	

2000	

3000	

4000	

5000	

6000	

1	 2	 4	 8	 16	 32	 64	

M
B	
pe

r	s
ec
on

d	

Threads	

KNL	FPP	

READ	

DIRECT	READ	

WRITE	

Single shared file I/O
•  Scales better, still not great
•  Contention first appears on

cl_object_attr_lock, ~16 processes
•  Page cache at 32-64 processes, mapping-

>tree_lock
•  Disastrous, most of CPU time spent

spinning there

Cl_object_attr_lock
•  cl_object_attr_lock can be converted to an

rwlock
•  CPU spinning drops, perf record looks

good
•  Performance gets worse by 40%
•  Fairness issues: Prior to ~3.15 kernel,

rwlocks are badly unfair, no queueing

Cl_object_attr_lock
•  Osc_page_touch_at (a writer to the attrs)

appears in the perf traces
•  Less time spent spinning, but writer is

blocked, which kills performance
•  Newer rwlocks (3.15+) are queued & fair,

should help… Though we might not need
them.

Mapping->tree_lock
•  Tree_lock protects the radix tree for the

page mapping for our file (not a problem in
FPP, since there is a mapping per file)

•  Nothing we can do directly, deep in the
page cache

•  Direct I/O!

Direct I/O
•  Direct I/O writing is terrible, since we

cannot do the usual asynchronous writing
•  Direct I/O reading is great
•  Bonus: avoids cl_env contention in FPP

because it doesn’t call ll_invalidate_page

Direct I/O

0	

1000	

2000	

3000	

4000	

5000	

6000	

1	 2	 4	 8	 16	 32	 64	

M
B	
pe

r	s
ec
on

d	

Threads	

KNL	Direct	I/O	

FPP	READ	

SSF	READ	

KNL vs. Xeon: Locking Primitives

•  That’s it for Lustre directly.
•  Let’s talk locking primitives…

KNL vs. Xeon: Locking Primitives

•  KNL is slower than Xeon (~30% of Xeon
speed in scalar/control code)

•  Solution: Add processes
•  Lock contention is worse with > number of

processes, kills performance
•  “Just parallelize it” – Actual quote from

someone at Cray about Lustre and KNL

KNL vs. Xeon: Locking primitives

•  Important question: 
KNL is slower, but is it any worse at
contention than Xeon?

•  Trivial benchmark: 
Lock, increment, unlock, repeat until time
is up. Kernel space.

•  Implemented as Lustre patch to proc
(Available on request, code quality…)

0.00E+000	

5.00E+007	

1.00E+008	

1.50E+008	

2.00E+008	

2.50E+008	

3.00E+008	

3.50E+008	

4.00E+008	

4.50E+008	

1	 2	 8	 32	 64	

Op
era
t
ions	

Threads	

Locking	primi>ve	scalability	

Xeon	-	Spinlock	

Xeon	-	Mutex	

KNL	-	Spinlock	

KNL	-	Mutex	

Locking Primitives
•  Answer: No, KNL isn’t any worse than Xeon
•  Observations:
•  Mutexes aren’t hurt too much by contention

>2, but have problems this doesn’t show
•  Standard spin locks are terrible under

contention
•  Atomic increment – Highly inconsistent

results, seemed to be flat after 2 threads
•  Rwlocks – not graphed – have the major

problem of unfairness

Qspinlocks!
•  Ideally, we’d remove all points of contention,

but that’s not practical
•  Better locking primitives offer hope!
•  Qspinlock, new spinlock implementation

added in early 4.x kernel
•  Very clever, avoids most contention on a

single memory location
•  Might make rwlock change irrelevant
•  See https://lwn.net/Articles/590243/

Where’s the beef?
•  No KNL specific improvements except for

cl_env change.
•  Can’t get newer kernels running on Cray

hardware yet (Porting work ongoing)
•  Tests in VMs with current kernels showed

totally different results from hardware; not
worth testing there

•  Use newer kernels if you can

What’s left?
•  Contention is still bad in the page cache, can

we do anything?
•  Lockless page cache proposed ~8 years ago,

never happened
•  Some intriguing documents about lockless

page cache on HPDD JIRA
•  Why are 2 threads SSF not as fast as 2

threads FPP? (No visible contention client
side)

•  Adding threads other places – Cray gnilnd
needed another worker thread on KNL

Finally:
•  Any questions?
•  Happy to answer questions later or by

email (paf@cray.com)

