Lustre on ZFS

Andreas Dilger
Software Architect
High Performance Data Division
September, 24 2012
Introduction

Lustre on ZFS Benefits
Lustre on ZFS Implementation
Lustre Architectural Changes
Development Status
Landing Status
Preliminary Performance Results
Future Lustre/ZFS Development
Lustre on ZFS Benefits

Can leverage many ZFS features in Lustre 2.4

- Robust code with 10+ years maturity
- Data checksums on disk + Lustre checksums on network
- Online filesystem check/scrub/repair - *no more e2fsck!*
- Scales beyond current filesystem limits (object count/size, filesystem size)
- Easier management of many disks, commodity JBODs without RAID hardware
- Integrated with flash storage cache (L2ARC read cache)
- Optional data compression on disk can improve real-world IO performance

Other features will need extra effort to work with Lustre

http://zfsonlinux.org/lustre.html
Lustre on ZFS Implementation

On-disk format is ZFS compatible
• Can mount MDT/OST with Linux ZFS filesystem module
• Simplifies debugging/maintenance/upgrades

Network protocol independent of backing filesystem
• Fixed some hard-coded assumptions on client
 – Assumed maximum object size was 2TB (ext3 limit, fixed in 2.3)
 – Assumed OST blocksize \leq PAGE_SIZE when reserving space

New Object Storage Device (OSD) module
• Integrates with ZFS Data Management Unit (no FUSE/VFS)
• Access ZFS transactions/features directly from Lustre
* Multiple OSD types (ZFS/Idiskfs) on a single node are not supported
Lustre Architectural Changes

Remove usage of VFS APIs

• Only access storage via OSD API

Clean up layering of MDS and OSS stacks

• Abstract MDS-to-OSS operations via OSD API
• Simplifies DNE design and implementation

Fix some longstanding MDS/OSS recovery issues

• MDS drives object destroy, avoids client failure issues

Allows ZFS support to co-exist with ldiskfs

• Potential for Btrfs OSD in the future, when it is faster/stable
Development Status

Feature development finished on Orion branch

- OSD API implemented for ZFS and finished for ldiskfs
- OST, MDT, MGT use only OSD API to access storage devices
- LOD/OSP are OSD API replacements for LOV/OSC
 - OSP proxies operations, transactions for remote OST storage
- Quota accounting and enforcement restructured for ZFS

Code has been under testing at LLNL for past year

- Development/testing clusters
- Scale testing up to ½ of Sequoia system (384 OSTs)
- Recent early deployment on ½ of Sequoia system
Landing Status

ZFS OST functionality landed for 2.3 (for testing only)
• Basic utilities support to format, mount ZFS OST filesystem

Work underway to land remaining Orion changes to master
• Utilities cleaned up for consistency between ZFS & Idiskfs
• MGS can run on ZFS
• Ilog functionality now landed
• MDD, LOD, OSP, quota landings underway

Will test commits to master branch with ZFS and Idiskfs
Preliminary Performance Results (1/384 scale)

Stonewalling IOR FPP Writes
2 OSTs (6x 8+2 RAID6 SAS)

Stonewalling IOR FPP Reads
2 OSTs (6x 8+2 RAID6 SAS)
Preliminary Performance Results (1/12 scale)

Stonewalling IOR FPP Writes
64 OSTs (192x 8+2 RAID6 SAS)

Stonewalling IOR FPP Reads
64 OSTs (192x 8+2 RAID6 SAS)
Future Lustre/ZFS Development

ZFS object iterator for online LFSCK

Performance investigation and tuning

- Allow up to 1MB ZFS block size to match Lustre RPC size
- osd-zfs ZFS Intent Log (ZIL) flash write cache integration
 - Allow fast synchronous IO operations
 - Avoid need to wait for full ZFS transaction commit

ZFS fault management and automatic hot-sparing

Longer term - better Lustre integration

- Snapshot support (synchronization, namespace visibility)
- Common network/disk checksum
Operational Changes

Relatively few operational changes for ZFS

• Can create ZFS pool/dataset manually, or via `mkfs.lustre`

• Recommend one target per pool, MGS always in separate dataset

 `mkfs.lustre ... --backfstype=zfs test-mgs/mgs mirror /dev/sda /dev/sdb`
 `mkfs.lustre ... --backfstype=zfs test-mdt0/mdt0 mirror /dev/sdc /dev/sdd`
 `mkfs.lustre ... --backfstype=zfs test-ost0/ost0 raidz2 /dev/sd[a-j] raidz2 /dev/sd[k-t]`

```
mount -t lustre test-ost0/ost0 /mnt/ost/ost0
```

`statfs/df` blocks/inodes, quota data is not totally accurate

• Copy-on-write semantics make this impossible

No `lfsck` support for ZFS filesystems yet
Thank You
LLNL Sequoia Lustre Architecture

Metadata Targets (MDT)
- ZFS Mirror SSD/JBOD

Metadata Servers (MDS)
- Today: 1 + backup
- MDS 1
- MDS 2

Object Storage Servers (OSS)
- OSS 768
- OSS 0
- OSS 1
- OSS 2
- OSS 3
- OSS 764
- OSS 765
- OSS 766
- OSS 767

Object Storage Targets (OST)
- 68PB raw
- 55PB usable
- 72 TB OST size
- 1152 TB Scalable Unit
- ZFS on 3x Hardware RAID-6
- 8+2 nearline SAS

96k Compute Nodes

768 IO Nodes

1.5M cores

1.5TB/s

0.5-1TB/s

= failover