Lustre-HSM at CINES
Integration & administration feedback

22/09/2015
Jérôme Chapelle <chapelle@cines.fr>
Hervé Toureille <toureille@cines.fr>
Agenda

- The CINES
- A datacentric architecture : The Evolution
- Current architecture
- Lustre-HSM in real life : Examples
- Conclusion
CINES
The national computer center of french higher education

- French public organisation under the supervision of the French Ministry in charge of higher education and research.
- Provides the french public research community with computing resources and services.
- Located in Montpellier, 55 persons: technicians, engineers and administratives.
CINES

The national computer center of french higher education

Missions :

- High Performance computing : IBM and Bull
- Long term preservation of data and digital documents for universities and public research institutions
- Data center hosting for french national level academic institutions : 10 partnerships, 30 IT cabinets
A datacentric architecture

• Why:
 – HPC have their own fast storage, not secured
 – Need to share data between different environments
 – HPC lives and dies, Data remains

• From NFS to Lustre HSM: a « space » odyssey
• Current architecture: machines and processes
Datacentric architecture

OCCIGEN
- 5PB Lustre
- Working space
- 100GB/s IB
- 10GB/s IB

Home Panasas
- 260TB

Other Clusters
- Bull: Cristal
- IBM: Yoda
- 10GB/s IB
- 50GB/s IB
- NFS

Long Term Archiving
- EUDAT
- ESGF
- NFS

Scientific Data
- Lustre HSM
- 2PB

Archive
- CXFS
- 500TB

Tape Lib.1
- 2x3PB

Tape Lib.2

IBM

First step - 2008
Narcisse V1
First step - 2008
Narcisse V1 : NFS File server

- 500 TB disks @ 1GB/s (NFS) + 1.5 PB tape
- Offered services:
 - « Unlimitted » storage thanks to DMF HSM
 - Backup and restore service with 15 days retention (based on xfsdump)
- How: DMF, XFS
Second Step - 2013

JADE

- 3xGWs
- 350TB
- 5 GB/s
- 20 GB/s
- Lustre 700TB
- CN
- CN
- CN
- SN

Narcisse

- 100TB
- 2x2 PB
- VTL
- Tape Lib.1
- Tape Lib.1

- Narcisse NFS
- Narcisse SRV
- DataMovers
- 100TB Archive
- 500TB CXFS
- 100TB
- 500TB

Scheduled copy
Second Step - 2013
Store 1: a secured Lustre

- Added 350 TB @ 5GB/s (Lustre)
- Added a 100 TB VTL for small files
- Offered services:
 - Fast and secured storage
 - Compute nodes able to access this space
- How: rsync, pDMF, CXFS
- Expected Lustre HSM, but rsync used instead
Current Architecture - 2015

OCCIGEN

- CN CN CN SN

Lustre

- 5 PB
- 100 GB/s

Lustre HSM

- 12xGWs
- 50 GB/s
- Scheduled copy

Narcisse

- Narcisse NFSs
- Narcisse SRVs
- DataMovers

- 2x3 PB
- 100TB
- VTL
- Tape Lib.1
- Tape Lib.1

Store

- 2 PB
- RobinHood

Archive

- 364TB

CXFS

- 120TB
Current Architecture - 2015
Store 2 : Lustre HSM

- Upgraded Lustre : 2PB @ 50GB/s with HSM
- High availability cluster
- Offered services :
 - Faster storage
 - « Unlimited » volume thanks to HSM
 - Automated secure process
 - No more easy restore process
Current Architecture - 2015

OCCIGEN

5PB
Scratch
Lustre

260TB
Home
PanFS

O² IB Fabric

NC NC NC NS

DATA IB Fabric (FDR)

2PB
Lustre
HSM

120TB
CXFS

100TB
VTL

2x3PB
Tape
Lib.2

364TB
Archive

2x
GW...
GW

12x

RobinHood

FC Fabric (8Gb)

narcisse-srv

DataMover

...

narcisse-nfs

DataMover

NFS Clients
The machines

- Lustre Cluster
- DMF Cluster
- RobinHood
Lustre HSM

- 2x DDN SFA12k
- 420x 3TB SAS Disks
- 2x MDS
- 12x OSS – 84 OST
- 12x LNET Gateways
- InfiniBand FDR (56Gb)
- Lustre 2.5.34.1 (IEEL 2.2.0.2) – RHEL 6
PDMF & CXFS

- 2x CXFS & DMF servers (HA)
- 3x DMF DataMovers
- 2x NFS servers
- 2x IS5500 (NetApp E5400)
- 120x 2TB SAS disks
- 2x Brocade 300e (24x8Gb)
PDMF & CXFS

• 2x CXFS & DMF servers (HA)
• 3x DMF DataMovers
• 2x NFS servers
• 2x IS5500 (NetApp E5400)
• 120x 2TB SAS disks
• 2x Brocade 300e (24x8Gb)
Robinhood

- Intel Xeon E5-2620v2 (2.1Ghz x 6)
- 128GB DDR3
- SSD 460GB : database
- 2x SAS 1TB (RAID1) : system
Tape Libraries

- Two IBM TS3500, with 3000 tapes each (~3PB)
 - Main one: 9 IBM 3592E06 drives
 - Second one: 10 LTO4 drives
- Drive performances: 150 MB/s
- Low TB cost + extensibility
Virtual Tape Library

- One COPAN 400 shelf (100 TB)
- Massive array of idle disk: low energy footprint
- Fast random access (compared to tapes)
- Perfect for small files (90% of files are small)
- Discontinued product
Lustre in real life

What can we do with a Lutre-hsm pDMF cluster?

• Securing data
• Gaining space on the Lustre filesystem
• Restoring erased files
Securing Data

narcisse-nfs2:/store/lad15_demo # ls -l
-rw-r--r-- 1 demo demo 1447447676 14 sept. 15:43 file1G

narcisse-nfs2:/store/lad15_demo # lfs hsm_state ./file1G
./file1G: (0x00000000)
narcisse-nfs2:/store/lad15_demo # lfs hsm_archive ./file1G
narcisse-nfs2:/store/lad15_demo # lfs hsm_state ./file1G
./file1G: (0x00000000)

Nothing happens ?
Beware, migration is an asynchronous process !
MDS /proc file: active requests

```
[root@mds201 hsm]# cat /proc/fs/lustre/mdt/store2-MDT0000/hsm/active_requests
fid=[0x200010ccf:0x2c08:0x0] dfid=[0x200010ccf:0x2c08:0x0]
compound/cookie=0x5660b019/0x5605081f action=ARCHIVE archive#=1 flags=0x0 extent=0x0-
0xffffffffffffffff gid=0x0 data=[] canceled=0 uuid=9544894b-ea3c-4113-02a9-e8fbcd84b672 done=0
```

Action= ARCHIVE
Fid=[0x200010ccf:0x2c08:0x0]

```
[root@mds201 hsm]# lfs fid2file /store [0x200010ccf:0x2c08:0x0]
/store/CINES/cnu0003/toureille/lad15_demo/file1G
```
DMF copytool : Logs

2015/09/14-16:01:20.507714 lhsmtool_dmf[21725]: copytool fs=store2 archive#=1 item_count=1
2015/09/14-16:01:20.507771 lhsmtool_dmf[21725]: waiting for message from Lustre HSM
2015/09/14-16:01:20.509073 lhsmtool_dmf[21731]: archive tier 2 default used
2015/09/14-16:01:20.509096 lhsmtool_dmf[21731]: archiving to Tier 2 (media/tape)
2015/09/14-16:01:20.509781 lhsmtool_dmf[21731]:
llapi_hsm_action_begin('/store/.lustre/fid/0x200010ccf:0x2c08:0x0')
2015/09/14-16:01:20.510224 lhsmtool_dmf[21731]: archive src: /store/.lustre/fid/0x200010ccf:0x2c08:0x0
2015/09/14-16:01:20.510248 lhsmtool_dmf[21731]: archive dst: /archive/store2Backup/2c08/0000/0ccf/0001/0002/0000/0x200010ccf:0x2c08:0x0
2015/09/14-16:01:20.510257 lhsmtool_dmf[21731]: archive pth: CINES/cnu0003/toureille/lad15_demo/file1G
2015/09/14-16:01:20.510263 lhsmtool_dmf[21731]: archiving 'CINES/cnu0003/toureille/lad15_demo/file1G'
--> '/archive/store2Backup/2c08/0000/0ccf/0001/0002/0000/0x200010ccf:0x2c08:0x0' (Tier 2)
2015/09/14-16:01:20.537517 lhsmtool_dmf[21731]: dmu_archive_async
'/archive/store2Backup/2c08/0000/0ccf/0001/0002/0000/0x200010ccf:0x2c08:0x0' ->
'/store/.lustre/fid/0x200010ccf:0x2c08:0x0'
2015/09/14-16:01:20.537802 lhsmtool_dmf[21731]: dmu_archive_async dispatched dmuereqid 17811
(...)
2015/09/14-16:03:43.956524 lhsmtool_dmf[21730]: archive 'CINES/cnu0003/toureille/lad15_demo/file1G'
(Tier 2) succeeded
2015/09/14-16:03:43.956554 lhsmtool_dmf[21730]: Action completed, notifying coordinator
cookie=0x5605081f, FID=[0x200010ccf:0x2c08:0x0], hp_flags=0 err=0
2015/09/14-16:03:43.957909 lhsmtool_dmf[21730]:
llapi_hsm_action_end('/store/.lustre/fid/0x200010ccf:0x2c08:0x0')
2015/09/14-16:03:43.957934 lhsmtool_dmf[21730]: SGITIME t2archive 10446744073709551615 143.450170
Check HSM state again:

```shell
narcisse-nfs2:/store/lad15_demo # lfs hsm_state ./file1G
./file1G: (0x00000009) exists archived, archive_id:1
```

The file is archived. Now let's try to gain some space

```shell
narcisse-nfs2:/store/lad15_demo # lfs hsm_release ./file1G
narcisse-nfs2:/store/toureille/lad15_demo # lfs hsm_state ./file1G
./file1G: (0x0000000d) released exists archived, archive_id:1
```

The hsm_release action is a synchronous process.
Restoring data

How to recover a deleted file on a Lustre-HSM cluster?

With the /archive/shadow

```
$ ls /archive/shadow
ls: impossible d'accéder à /archive/shadow: Aucun fichier ou dossier de ce type
```

Since lhsmtool_dmf version 1.0.7, no more shadow directory...

Ok… so how can I restore files?
Restoring data

Thanks to Robinhood and his «Deferred removal policy », when a file is deleted, Robinhood saves the « Fid » and path into the SOFT_RLM table.

```
mysql> SHOW COLUMNS FROM SOFT_RM;
+----------------+-----------------+------+-----+------------+-----------+
<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>fid</td>
<td>varchar(64)</td>
<td>NO</td>
<td>PRI</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>fullpath</td>
<td>varchar(4095)</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>soft_rm_time</td>
<td>int(10) unsigned</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>real_rm_time</td>
<td>int(10) unsigned</td>
<td>YES</td>
<td>MUL</td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>
+----------------+-----------------+------+-----+------------+-----------+
4 rows in set (0.00 sec)
```
We can find our deleted file:

```
mysql> select fid,fullpath from SOFT_RM where fullpath like '%file1G%';
+---------------------------------------+---------------------------------------+
<table>
<thead>
<tr>
<th>fid</th>
<th>fullpath</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x200010ccf:0x2c08:0x0</td>
<td>/store2/CINES/cnu0003/toureille/lad15_demo/file1G</td>
</tr>
</tbody>
</table>
+---------------------------------------+---------------------------------------+
1 row in set (0.08 sec)
```

Fortunately, we got the Fid 0x200010ccf:0x2c08:0x0 with which we can deduce the good path:

```
/archive/store2/2c08/*/0ccf/*/0x2c08:0x00
```

- # echo /archive/store2Backup/2c08/*/0ccf/*/0x2c08:0x0
 /archive/store2Backup/2c08/0000/0ccf/0001/0002/0000/0x2c08:0x0

- # cp /archive/storeBackup/2c08/*/0ccf/*/0x2c08:0x0
 /store/toureille/lad15_demo/file1G

- # ls -l /store/CINES/lad15_demo/file1G
 -rw-r---- 1 root root 1447447676 15 sept. 11:48 /store/toureille/lad15_demo/file1G
Conclusion

• HSM works fine
• 6 months late because of bugs
• Intel IML not supported by the integrator
• No more « easy » restore functionality
Our expectations

- « Easy » and efficient restore functionnality
- More tools able to manage tape libraries

Our questions

What about :
- future Lustre / RobinHood versions
- a better copytool integration
- the behavior when disk will be full
Thank you

Questions ?
Lustre HSM
RobinHood

Migration policy

Migration_Parameters
{
[...]
 # interval for running migrations
 runtime_interval = 8h ;

 # maximum number of migration requests per pass
 # (0: unlimited)
 max_migration_count = 2000000 ;

 # maximum volume of migration requests per pass
 # (0: unlimited)
 max_migration_volume = 8TB ;
[...]
}
RobinHood

Purge policy (Freeing space)

Trigger purge on filesystem usage
Purge_Trigger
{
 trigger_on = global_usage;
 high_threshold_pct = 95%;
 low_threshold_pct = 90%;
 check_interval = 15min;
 # raise an alert when the high threshold is reached
 alert_high = TRUE;
 # raise an alert if not enough data can be purged
 # to reach the low threshold
 alert_low = TRUE;
}
RobinHood
Remove policy (Hard delete)

HSM remove policy (hard delete)
hsm_remove_policy
{
 # set this parameter to 'off' for disabling HSM object removal
 # hsm_remove = off;
 hsm_remove = enabled;
 # delay before impacting object removal in HSM
 deferred_remove_delay = 9d;
}