LNet and LND Tuning Explained

Chris Horn, Cray Inc.
hornc@cray.com
Agenda

- Why I’m Giving This Talk
- LNet’s Credit System
- LNet Credits and 4MB RPCs
- o2ibInd parameters
- Quick Testing Tutorial
Did you mean: optimal Inet lund tuning configuration

Tuning NGINX for Performance - NGINX
https://www.nginx.com/blog/tuning-nginx/ NGINX, Inc.
Oct 10, 2014 - You can tune almost any setting, but this post concentrates on the few settings for ... net.core.somaxconn – The maximum number of connections that can be Prices · nginx.conf 2015 Schedule, Best Prices, Sneak Peek, and More! ... United States, Afghanistan, Ä...land Islands, Albania, Algeria, Andorra ...

CleanFlight Setup Tuning Guide for Naze32 / CC3D ...
blog.oscarliang.net/cleanflight-naze32-setup/
Jan 16, 2015 - This tutorial will show you how to setup Cleanflight firmware flash on Naze32 Flight Controller. ... OscarLiang.net carry out a series of tuning cycles, perform all sorts of movements to determine the "best" PID settings. ... Before that, to adjust PID values, we usually have to land, disarm, and connect your ...

MinimOSD Micro Setup Tutorial - Naze32 PID Tuning via ...
blog.oscarliang.net/minimosd-micro-setup-naze32-pid-rssi/
Apr 30, 2015 - OscarLiang.net ... Although it's more complicated to setup than those standalone It also allows you to tune PID with OSD menu. I found it's best to get RSSI from a spare PPM channel, that way you So when I takeoff, battery voltage reads 12.6 and stays at 12.6, until I land and disarm, then it changes ...

[PDF] An optimally tuned ensemble of the “eb_go_gs ...
www.geosci-model-dev.net/6/1729/2013/gmd-6-1729-2013.pdf
by R Marsh - 2013 - Related articles
 An optimally tuned ensemble of the “eb_go_gs” configuration of ... off between
Lustre Tuning - Obsolete Lustre Wiki
wiki.old.lustre.org/manual/LustreManual18_HTML/LustreTuning.html
This chapter contains information to tune Lustre for better performance and ... is a process of trial and error, and varies for each particular configuration. ... At this time, no testing has been done to determine the optimal number of MDS ... This section describes LNET tunables. ... We are making changes to the ptiInd module.

LustreProc - Obsolete Lustre Wiki
LND timeouts that ensure point-to-point communications complete in finite time in the ... If Lustre timeouts are not accompanied by LNET timeouts, then you need to ... One of the goals of adaptive timeouts is to relieve users from having to tune the The Lustre engine always attempts to pack an optimal amount of data into ...

Book Index - Obsolete Lustre Wiki
wiki.old.lustre.org/manual/LustreManual20_HTML/ix.html
LNET self-test. commands, 1 ... administration, regenerating Lustre configuration logs, 1. administration ... reliability best practices, 1. selecting storage for ... SOCKLND kernel
TCP/IP LND, 1. starting. LNET, 1. statahead, tuning, 1. stopping.

[PDF] Tips and Tricks for Diagnosing Lustre Problems on Cray ...
by C Spitz - Cited by 1 - Related articles
LNET, and LND messages are recorded in the syslog messages file on the SDB ... Since the tool does not require the configuration from the. Lustre MGS or the ...
COMPUTE
	

STORE
	

ANALYZE

Video: Lustre Network (LNET) Router Configuration and ...
insidehpc.com/.../video-lustre-network-lnet-router-configuration-and-tun... ▼
Apr 22, 2015 - In this video from LUG 2015 in Denver, John Fragalla from Seagate presents: Lustre Network (LNET) Router Configuration and Tuning.

Lustre Network (LNET) Router Configuration and Tuning ...
www.youtube.com/watch?v=bm_uPtNsdlY
Apr 15, 2015 - Uploaded by RichReport
In this video from LUG 2015 in Denver, John Fragalla from Seagate presents: Lustre Network (LNET) Router ...

Lustre Tuning - Obsolete Lustre Wiki
wiki.old.lustre.org/manual/LustreManual20_HTML/LustreTuning.html ▼
This chapter contains information about tuning Lustre for better performance and includes the following sections: Optimizing the ... Tuning LNET Parameters.

LNET Configuration - ORNL Lustre Activities
lustre.orl.gov/ecosystem/documents/LustreEco2015-Tutorial2.pdf ▼
Mar 3, 2015 - 3 types of nodes to consider. – Lustre Client. – Lustre Server. – LNET Router. • All tuned differently. – Some commonalities. • Let’s take a look.

Oak Ridge National Laboratory Lustre Tuning and ...
lustre.orl.gov/lustre101-courses/content/C1/L5/LustreTuning.pdf ▼
Tuning recommendations from OLCF experience. • Multi-rail LNET configurations •
Why Tuning Matters

% Gain Over Default

I/O Size

<table>
<thead>
<tr>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C O M P U T E | S T O R E | A N A L Y Z E
(Some of) The Software Stack

User Application

VFS

CLIO/MDC/OSC/etc.

Portal RPC (PtlRPC)

Lustre Network (LNet)

Lustre Network Driver (LND)

Network Driver (e.g. mlnx4)
LNet’s Credit System - Sends

● Every Inet_send() takes a peer credit and network interface credit
 ● Except for the loopback NI: 0@lo

● Peer Credit

● Network Interface Credit
Peer Credits

- Governs the number of concurrent sends to a single peer.
- Set with an LND’s `peer_credits` module parameter
 - e.g. “ko2iblnd peer_credits”
- **Point-to-point**
 - End-to-end flow control accomplished at higher layer. e.g. `max_rpcs_in_flight`

```bash
# cat /proc/sys/lnet/peers

<table>
<thead>
<tr>
<th>nid</th>
<th>refs</th>
<th>state</th>
<th>last</th>
<th>max</th>
<th>rtr</th>
<th>min</th>
<th>tx</th>
<th>min queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.149.2.72@o2ib</td>
<td>3</td>
<td>up</td>
<td>-1</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>110</td>
</tr>
</tbody>
</table>
```

- “tx” is the number of peer credits currently available for this peer
- “min” is the smallest number of peer credits seen
- Negative credit count indicates the number of messages awaiting a credit
Network Interface Credits

● Governs the number of concurrent sends to a single network
● Set with an LND’s credits module parameter
 ● e.g. “ko2iblnd credits”
 ● Shared across all CPU partitions (CPTs)

cat /proc/sys/lnet/nis

<table>
<thead>
<tr>
<th>nid</th>
<th>status</th>
<th>alive</th>
<th>refs</th>
<th>peer</th>
<th>rtr</th>
<th>max</th>
<th>tx</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.149.4.5@o2ib</td>
<td>up</td>
<td>-1</td>
<td>9</td>
<td>126</td>
<td>0</td>
<td>2048</td>
<td>2048</td>
<td>1796</td>
</tr>
</tbody>
</table>

● “max” is total available (i.e. value of ko2iblnd credits)
● “tx” is the number currently available
 ● Negative number indicates number of messages awaiting a credit
● “min” is the low water mark
LNet’s Credit System – (Routed) Receives

- Additional credit accounting when routers receive a message destined for another peer
- These credits account for resources taken on the router node
- Peer Router Credit
- Router Buffer Credit
Peer Router Credit

- Governs the number of concurrent receives from a single peer
- Prevent single peer from using all router buffer resources
- Set with module parameter “ko2iblnd peer_buffer_credits”
 - (Or “ksocklnd peer_buffer_credits”; Default is 0 for both)
 - At network initialization, if zero, or LND does not provide value, then uses the “Inet peer_buffer_credits” module parameter: Default is 0
 - If LND and LNet value is zero, then LND’s peer_credits value is used
- Router takes a credit for the peer it’s receiving from (Inet_post_routed_recv_locked())
- A credit is given back when the receive completes (Inet_return_rx_credits_locked())
Router Buffer Credit

- Router has limited number of three different sized buffers: tiny, small, large
- Router buffer credits ensure we only receive if an appropriate buffer is available
- Tiny buffers for 0 byte payloads
- Small buffers for Single page payloads
- Large buffers for payload > single page
- Number of buffers of each type defined with LNet module parameters:
 - options lnet tiny_router_buffers (At least 512 per CPT)
 - options lnet small_router_buffers (At least 4096 per CPT)
 - options lnet large_router_buffers (At least 256 per CPT)
LNet Credits and 4MB RPCs

- 4MB I/Os associate additional LNet memory descriptors with a bulk operation. LNet MTU is still 1MB
- The total number of messages (and thus credits) required to complete bulk reads and writes is lower for transfers > 1MB
- `lctl set_param osc.*.max_pages_per_rpc=1024`

<table>
<thead>
<tr>
<th></th>
<th>256 pages/RPC</th>
<th>1024 pages/RPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MB Write</td>
<td>1 RPC, 2 Credits</td>
<td>1 RPC, 2 Credits</td>
</tr>
<tr>
<td>2 MB Write</td>
<td>2 RPCs, 4 Credits</td>
<td>1 RPC, 3 Credits</td>
</tr>
<tr>
<td>3 MB Write</td>
<td>3 RPCs, 6 Credits</td>
<td>1 RPC, 4 Credits</td>
</tr>
<tr>
<td>4 MB Write</td>
<td>4 RPCs, 8 Credits</td>
<td>1 RPC, 5 Credits</td>
</tr>
</tbody>
</table>

of bulk write RPCs sent and peer credits taken for bulk transfer by a single client for different sized writes (read case is the same)
o2iblnd parameters

- **peer_credits, peer_credits_hiw, credits**
- **concurrent_sends and map_on_demand**
 - Control number of Work Requests per Queue Pair
 - \# WRs = (map_on_demand + 1) * concurrent_sends

```
# ibv_devinfo -v | grep max_qp_wr
max_qp_wr: 16351
```

LNetError: 16485:0:(o2iblnd.c:869:kiblnd_create_conn()) Can't create QP: -22, send_wr: 16448, recv_wr: 256

- **map_on_demand**
 - Disabled by default (value of 256 in above equation)
 - Reduce number of work requests per queue pair at the cost of using FMR for transfers >= map_on_demand
 - Need LU-3322 to mix map_on_demand on/off on different peers
o2ibLnd parameters - cont.

- **Fast Memory Region tuning:**
 - Memory Region registration is “heavy”
 - FMR pools are lightweight by comparison
 - Grow at runtime, so just need sane starting point
 - `fmr_pool_size`
 - `fmr_flush_trigger`
 - `fmr_cache`
 - Note: FMR eventually going away
 - http://article.gmane.org/gmane.linux.drivers.rdma/29040
LNet Testing How-To

- Establish a baseline:
 - Reference materials
 - ib_read_bw, ib_write_bw, etc.
 - Inet_selftest

- Set goals
 - Peer-to-peer performance
 - Bulk performance, I/O size
 - Memory usage
 - Message rate

- Iterate, iterate, iterate
 - Make an educated guess
 - Measure with Inet_selftest
 - repeat
Helpful Links and References

- Understanding Lustre Filesystem Internals
- LNet Configuration
- Lustre Tuning and Advanced LNet Configuration
 - http://lustre.ornl.gov/lustre101-courses/content/C1/L5/LustreTuning.pdf
- InfiniBand™ Architecture Specification Volume 1
 - http://www.infinibandta.org
- Lustre Resiliency: Understanding Lustre Message Loss and Tuning for Resiliency
 - http://goo.gl/upcN3l
- Linux Kernel Networking: Implementation and Theory
- Minimizing Lustre Ping Effects at Scale on Cray Systems
 - https://cug.org/proceedings/attendee_program_cug2012/includes/files/pap166.pdf
Questions?

Chris Horn
hornc@cray.com