Lustre Admins & Developers Workshop 2016

Petascale Data Migration

Daniel Rodwell
Manager, Data Storage Services

September 2016
Agenda

- **NCI Storage Overview**
 - Systems & Growth

- **Migration Drivers**
 - Redistribution of Content
 - Filesystem Decommissioning / Replacement

- **Performance Profiles**
 - Filesystem Source & Destination
 - Data Migration Nodes

- **Considerations & Planning**

- **Data Migration Tools**
 - Quick Comparison of Utilities
 - Performance

- **Data Migration Process**
 - NCI Approach
 - Performance in Practice

- **Issues and Future Considerations**
30PB High Performance Storage

Storage at NCI
• NCI is Australia’s national high-performance computing service
 – comprehensive, vertically-integrated research service
 – providing national access on priority and merit
 – driven by research objectives

• Operates as a formal collaboration of ANU, CSIRO, the Australian Bureau of Meteorology and Geoscience Australia

• As a partnership with a number of research-intensive Universities, supported by the Australian Research Council.
Where are we located?

- Canberra, ACT
- The Australian National University (ANU)
How big?

- Very.
- Average data collection is 50-100+ Terabytes.
- Larger data collections are multi-Petabytes in size.
- Individual files can exceed 2TB or be as small as a few KB.
- Individual datasets consist of tens of millions of files.
- Next Generation datasets likely to be 6-10x larger.

- Gdata1+2+3 = 451 Million inodes stored.
- 1% of /g/data1 capacity = 74TB.

Table:

<table>
<thead>
<tr>
<th>Collection</th>
<th>TB Approved</th>
<th>TB Ready</th>
<th>Ingested</th>
</tr>
</thead>
<tbody>
<tr>
<td>SkyMapper (Astronomy)</td>
<td>210.0</td>
<td>210.0</td>
<td>100%</td>
</tr>
<tr>
<td>Australian Data Archive (Social Sciences)</td>
<td>4.00</td>
<td>4.00</td>
<td>100%</td>
</tr>
<tr>
<td>BPA Melanoma Dataset (Biosciences)</td>
<td>588.00</td>
<td>588.00</td>
<td>100%</td>
</tr>
<tr>
<td>Plant Phenomics (Biosciences)</td>
<td>2.00</td>
<td>2.00</td>
<td>100%</td>
</tr>
<tr>
<td>Ocean Gm. Circulation Model (Earth Simulator)</td>
<td>27.00</td>
<td>27.00</td>
<td>100%</td>
</tr>
<tr>
<td>Year Of Tropical Convection</td>
<td>89.00</td>
<td>89.00</td>
<td>100%</td>
</tr>
<tr>
<td>CABLE Global Evolution Datasets</td>
<td>3.00</td>
<td>3.00</td>
<td>100%</td>
</tr>
<tr>
<td>COREX Int</td>
<td>2.00</td>
<td>2.00</td>
<td>100%</td>
</tr>
<tr>
<td>Coupled Model Intercomparison Project (CMIP5)</td>
<td>1,487.00</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Phenology</td>
<td>207.00</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>ACCESS Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal Climate Prediction</td>
<td>506.00</td>
<td>506.00</td>
<td>100%</td>
</tr>
<tr>
<td>Australian Bathymetry and Elevation reference data</td>
<td>37.00</td>
<td>37.00</td>
<td>100%</td>
</tr>
<tr>
<td>Australian Marine Video and Imagery Collection</td>
<td>7.00</td>
<td>7.00</td>
<td>100%</td>
</tr>
<tr>
<td>Global Navigation Satellite System (GNSS)</td>
<td>4.00</td>
<td>4.00</td>
<td>100%</td>
</tr>
<tr>
<td>Digitised Australian Aerial Survey Photography</td>
<td>68.00</td>
<td>68.00</td>
<td>100%</td>
</tr>
<tr>
<td>Earth Observation (Satellite, Landsat, etc)</td>
<td>1,400.00</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>IMOS-TERN Australian Satellite Imagery</td>
<td>568.00</td>
<td>568.00</td>
<td>100%</td>
</tr>
<tr>
<td>Satellite Soil Moisture Products</td>
<td>3.00</td>
<td>3.00</td>
<td>100%</td>
</tr>
<tr>
<td>Synthetic Aperture Radar</td>
<td>121.00</td>
<td>121.00</td>
<td>100%</td>
</tr>
<tr>
<td>BoM Observations</td>
<td>377.00</td>
<td>377.00</td>
<td>100%</td>
</tr>
<tr>
<td>BoM Ocean-Marine Collections</td>
<td>267.00</td>
<td>267.00</td>
<td>100%</td>
</tr>
<tr>
<td>Aust. 3D Geologist Models</td>
<td>1.00</td>
<td>1.00</td>
<td>100%</td>
</tr>
<tr>
<td>Aust. Geophysical Data Collection</td>
<td>10.00</td>
<td>10.00</td>
<td>100%</td>
</tr>
<tr>
<td>Aust. Natural Hazards Archive</td>
<td>5.00</td>
<td>5.00</td>
<td>100%</td>
</tr>
<tr>
<td>National CT-Lab Tomographic Collection</td>
<td>106.00</td>
<td>106.00</td>
<td>100%</td>
</tr>
<tr>
<td>TERN eMAST</td>
<td>48.00</td>
<td>48.00</td>
<td>100%</td>
</tr>
<tr>
<td>TERN Phenology Monitoring: Near Surface Remote Sen</td>
<td>1.00</td>
<td>1.00</td>
<td>100%</td>
</tr>
<tr>
<td>TERN eMAST Data Assimilation</td>
<td>30.00</td>
<td>30.00</td>
<td>100%</td>
</tr>
<tr>
<td>CSIRO/BedM Key Water Assets</td>
<td>20.00</td>
<td>20.00</td>
<td>100%</td>
</tr>
<tr>
<td>Models of Land/Water Dynamics from Space</td>
<td>16.00</td>
<td>16.00</td>
<td>100%</td>
</tr>
<tr>
<td>Totals</td>
<td>10,296</td>
<td>10,296</td>
<td>100%</td>
</tr>
</tbody>
</table>

https://www.rds.edu.au/collections
What do we store?

- High value, cross-institutional collaborative scientific research collections.

- Nationally significant data collections such as:
 - Australian Community Climate and Earth System Simulator (ACCESS) Models
 - Australian & international data from the CMIP5 and AR5 collection
 - Satellite imagery (Landsat, INSAR, ALOS)
 - Skymapper, Whole Sky Survey/ Pulsars
 - Australian Plant Phenomics Database
 - Australian Data Archive
 - EUMETSAT Copernicus Programme Sentinel Data

- Large Scale Genomics and Bioinformatics datasets
• **Lustre Systems**

 – **Raijin Lustre** – HPC Filesystems: includes /short, /home, /apps, /images, /system
 - 7.6PB @ 150GB/Sec on /short (IOR Aggregate Sequential Write)
 - Lustre 2.5.23 + Custom patches (NCI + DDN)

 – **Gdata1** – Persistent Data: /g/data1
 - 7.4PB @ 54GB/Sec Peak Read
 - Lustre 2.3.11 (IEEL v1)

 – **Gdata2** – Persistent Data: /g/data2
 - 6.75PB @ 65GB/Sec Peak Read
 - Lustre 2.5.42.8 (IEEL v2)

 – **Gdata3** – Persistent Data: /g/data3 –
 - Stage 1: 5.7PB @ 92GB/sec Peak Read
 - Stage 2: 8.2PB @ 120GB/Sec+ Peak Read
 - (Lustre 2.5.42.8, IEEL v2)
Why migrate data between filesystems?

Data Migration
Why Migrate Data?

Reasons for migrating data

- Migrate data from an old filesystem being decommissioned on to a new system

- Migrate a dataset or project to a different filesystem for performance, feature or security profile reasons

- Need to rebalance storage allocation distribution between filesystems to manage overall capacity and growth

- Duplication of data to multiple filesystems for protection or rollback

- Staged replacement of Persistent Filesystems – continual rolling replacement schedule.
3 Years ago...

- **Vayu HPC**
 - Previous Gen HPC Lustre Filesystem
 - 800TB, 25GB/Sec

- **Gdata (Original)**
 - Persistent Lustre Filesystem on Vayu
 - 900TB, 6GB/sec

- **Projects**
 - Dual State CXFS/DMF Filesystem
 - 1.4PB, 3GB/sec

- Migrated over 8PB, 100+ Million files between various internal data systems
- Need to find a solution that can scale to PetaBytes of data.
- Traditional approaches handle GigaBytes, not PetaBytes.
Nature of the Problem

• We have a High Performance Data Problem

 – An individual Project may be 2-3PB, 40+ Million files in size

 – Each file within the dataset or project needs to be read, written and verified

 – The time to process the data must be reasonable

 – A sequential, linear or traditional approach is unlikely to scale

 – Distributed & parallel processing of the problem is likely required
Component Performance & Resources Available

Performance Profiles
Raijin Test Cluster

- 36x Fujitsu CX250 Nodes
- Dual Intel Sandy Bridge Xeon E5-2670, 8C, 2.6GHz (same spec as main cluster)
- 32GB DDR3
- InfiniBand FDR interconnect, connected to Raijin HPC Fabric
- All Lustre Filesystems mounted

Summary

- 36 Nodes
- 576 Cores
- 36x IB interfaces at 5GB/sec (180GB/sec agg)
- Exemption - Can ssh between nodes
- Exemption - Can run jobs as root
- Administrative / Test Jobs do not block user jobs.
- Failed Administrative / Test jobs not shared on nodes with user jobs
Source
- Gdata1
 - 54GB/sec peak read performance
 - 520 OSTs, 400MB/sec peak R each
 - Lustre 2.3.11

Destination
- Gdata3
 - 70GB/sec+ peak write performance
 - 252 OSTs, 800MB/sec peak W each
 - Lustre 2.5.42.8
Preparing to Migrate User Project Data

Considerations & Planning
Things to Consider

– **Filesystem Bandwidth**

 • Typically, regular user filesystem access will still be present while an individual project migration is in progress

 • We don’t want to choke the filesystem with administrative data migration activities, or cause user jobs to go into heavy IO wait

 • Use long term monitoring to predict average user bandwidth requirements during migration period. Typically use max 50% of available filesystem bandwidth for project migrations.

– **Dry Run**

 • Dry run in business hours when all system administration staff are present

 • Something **will break unexpectedly** during testing

– **Run as Root**

 • Unless the administrator’s account has user/group access permissions to the files, typically you’ll be running as root. **Plan carefully. Think twice, run once.**

 • Build a ‘Flight Plan’ of all commands that you plan to run before you run them.

 • There is the potential to overwrite the wrong data, at speed, disastrously, as root.
Things to Consider

— **Dataset**
 - Determine the size and count of files before the migration, build a test data set to evaluate scaling and timing estimates
 - Use a test data set **to prove to yourself** that the mechanisms/utilities work as expected

— **Batch Process**
 - Break up the data into smaller batches within a project, i.e. run each first level subdirectory within the project as its own copy
 - Its easier to restart / resume on failure.
 - You can have hardware / software failures as any other HPC job could

— **Data Custodians**
 - Agreed time with data custodian for migration to occur
 - Use dry runs and scaling tests to estimate time required
 - Have a rollback plan
 - Preserve the original data (restricted access) on the source filesystem for a time period after the initial migration has completed.
Datasets

- **Determine count and size of dataset**
 - Use `find`, `du`, `lfs` quota
 - Use `rbh-lhsm-report` for quick summary

<table>
<thead>
<tr>
<th>group,</th>
<th>type,</th>
<th>count,</th>
<th>volume,</th>
<th>status,</th>
<th>avg_size</th>
</tr>
</thead>
<tbody>
<tr>
<td>proj1,</td>
<td>symlink,</td>
<td>4,</td>
<td>69,</td>
<td>n/a,</td>
<td>17</td>
</tr>
<tr>
<td>proj1,</td>
<td>dir,</td>
<td>149351,</td>
<td>929.67 MB,</td>
<td>n/a,</td>
<td>6.37 KB</td>
</tr>
<tr>
<td>proj1,</td>
<td>file,</td>
<td>6238341,</td>
<td>990.45 TB,</td>
<td>new,</td>
<td>166.48 MB</td>
</tr>
</tbody>
</table>

Total: 6387696 entries, 108901690825488 bytes used (990.46 TB)

<table>
<thead>
<tr>
<th>group,</th>
<th>type,</th>
<th>count,</th>
<th>volume,</th>
<th>status,</th>
<th>avg_size</th>
</tr>
</thead>
<tbody>
<tr>
<td>proj2,</td>
<td>symlink,</td>
<td>10358,</td>
<td>600.30 KB,</td>
<td>n/a,</td>
<td>59</td>
</tr>
<tr>
<td>proj2,</td>
<td>dir,</td>
<td>11792,</td>
<td>157.83 MB,</td>
<td>n/a,</td>
<td>13.71 KB</td>
</tr>
<tr>
<td>proj2,</td>
<td>file,</td>
<td>1570527,</td>
<td>229.37 TB,</td>
<td>new,</td>
<td>153.14 MB</td>
</tr>
</tbody>
</table>

Total: 1592677 entries, 252192953669719 bytes used (229.37 TB)

<table>
<thead>
<tr>
<th>group,</th>
<th>type,</th>
<th>count,</th>
<th>volume,</th>
<th>status,</th>
<th>avg_size</th>
</tr>
</thead>
<tbody>
<tr>
<td>proj3,</td>
<td>symlink,</td>
<td>404,</td>
<td>13.91 KB,</td>
<td>n/a,</td>
<td>35</td>
</tr>
<tr>
<td>proj3,</td>
<td>dir,</td>
<td>1279878,</td>
<td>5.98 GB,</td>
<td>n/a,</td>
<td>4.90 KB</td>
</tr>
<tr>
<td>proj3,</td>
<td>file,</td>
<td>43594251,</td>
<td>3.29 PB,</td>
<td>new,</td>
<td>81.03 MB</td>
</tr>
</tbody>
</table>

Total: 44874533 entries, 3704084238427042 bytes used (3.29 PB)
Comparison of toolsets

Data Migration Tools
Many different options available

- Lustre has some Lustre-to-Lustre filesystem replication mechanisms.
- Many different copy approaches available.
- Most filesystem migrations at NCI occur on a project by project basis – a gradual migration of projects from a filesystem being decommissioned or rebalanced.
- Options presented here have been found viable for Project / dataset copies between high performance filesystems.
- Utilities are independent of Filesystem type (work for non-lustre) and do not require a specific release of lustre, and are available today.
- **Traditional cp**
 - `cp -Rp /path/source /path/dest`
 - Always an option
 - Manual handling required to get performance out of it – build and split lists, or assign subdirectories.

- **Traditional Rsync**
 - `rsync -aAXS --numeric-ids --many-many-options /path/source /path/dest`
 - Smarter than cp
 - Not particularly well optimized for very large files or high bandwidth conditions
 - Accurate, reliable, well understood
 - Can use initial copy to stage data into place, followed by differential sync
 - Manual handling / scripting required to distribute work over multiple nodes
 - Large amounts of data will take a long time if not automated and distributed to multiple nodes.
Data Migration Tools

- **Pfsync**
 - https://github.com/martymac/fpart

 - Automate work distribution and queuing over the top of rsync
 - Uses fpart to build filelists
 - Has queue manager to distribute filelists as jobs to worker rsync processes

 - Can use most rsync options
 - `... -aAXS --numeric-ids --many-many-options /path/source /path/dest`

 - Still not particularly optimized for very large files or high bandwidth conditions
 - Easy to understand what is going on as it is based on rsync
 - Can use initial an copy and difference sync to stage data into place

 - Need to figure out partition size parameters for optimal performance and well balanced workload distribution
Data Migration Tools

- **dcp2 (distributed copy)**
 - http://fileutils.io
 - Main Contributors – LANL, LLNL, ORNL

- MPI application - scales very well
- MPI application – single node failure is fatal
- May need to tune mpirun parameters.
 - Can exceed memory on node
 - May need to adjust number of processes per host
 - May need to set mpirun bind-to options

- Limited options compared to rsync
- Can break lower performing filesystems with load
- Recommendation - start low with fewer nodes and processes, then scale up tests
Example dataset built for test

- Typical NCI project has millions of files
- Individual file size is commonly in the 100MB-150MB range
- Files created using
 - `dd bs=1048576 count=100 if=/dev/urandom of=/randomfile.$number`

- `/g/data1/proj/exampledata` (4 Million files, 400TB)
 - `/Bin1` (500,000 x 100MB files, 50TB)
 - `/Bin 1A` (100,000 x 100MB files, 10TB)
 - `/Bin 111` (10,000 x 100MB files, 1TB)
 - `/Bin1111` (1000 x 100MB files, 100GB)
 - `/Bin2` (500,000 x 100MB files, 50TB)
 - ...

- Lustre stripe count = 1 for all files (gdata filesystem default)
- Gdata1 = 1.6PB free, 79% Used (when test dataset created)
- Gdata3 = 1.8PB free, 76% Used (at start of each copy run)
Small Scale Test (1T, 10 000 files)

- Small Scale Test – Traditional cp
 - 1TB
 - 10,000 x 100MB files
 - 66 Minutes, 12 seconds.

```bash
# cp -Rp /g/data1/fu2/examledata/Bin1/Bin1A/Bin111 /g/data3/fu2/exampletransfer/cptest/
```

```
bash-4.1# date; time cp -Rp /g/data1/fu2/examledata/Bin1/Bin1A/Bin111 /g/data3/fu2/exampletransfer/cptest/; date
Tue Sep  6 22:19:18 AEST 2016
real    66m12.661s
user    0m0.514s
sys     40m27.818s
Tue Sep  6 23:25:31 AEST 2016
bash-4.1#
```

- iotop - cp performing a single process copy at approx. 290-340MB/sec
- 350MB/sec is about the average write performance we expect from a gdata1 OST
Small Scale Test – Traditional Rsync

- 1TB
- 10,000 x 100MB files
- 4 Hours, 35 Minutes

```
# rsync -aAXS --numeric-ids /g/data1/fu2/exampliedata/Bin1/Bin1A/Bin111 /g/data3/fu2/exampletransfer/rsynctest/

bash-4.1# date; time rsync -aAXS --numeric-ids /g/data1/fu2/exampliedata/Bin1/Bin1A/Bin111 /g/data3/fu2/exampletransfer/rsynctest/; date
Fri Sep 9 15:30:28 AEST 2016
real 261m14.329s
user 79m46.624s
sys 222m10.312s
Fri Sep 9 19:51:42 AEST 2016
bash-4.1#
```

- iotop – rsync performing a single process sync at approx 35-75MB/sec
- Default Rsync 3.0.6 from Centos 6.7 Repo. No custom compiler options.
Medium Scale Test (10T, 100 000 files)

- **Medium Scale Test – fpsync, 16 nodes**
 - 10TB
 - 100,000 x 100MB files

 - Fpsync requires the size and count of the worker partitions to be passed to it as command parameters.
 - -n is the number of partitions (jobs)
 - -f is the filecount for each partition
 - -s is the size in bytes for each partition

 - 100,000 files, 10484019363840 bytes (9.535 TiB)

 - - n = nodes x cores x 2 = 16 nodes x 16 cores x 2 = 512

 - - f = number files / # of partitions = 100000 / 512 = 200 (round up)

 - - s = number of bytes / # of partitions = 10484019363840 / 512 = 20476600320 = 20480000000 (round up)
Medium Scale Test – fpsync, 16 nodes

- 10TB
- 100,000 x 100MB files

```bash
# /sbin/fpsync -w 'r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25'
-d /g/data3/fu2/fpsync_work
-t /g/data3/fu2/fpsync_tmp
-vv -n 512 -s 20480000000
-f 200 -o '-aAXS --numeric-ids'
/g/data1/fu2/exampledata/Bin1/Bin1A
/g/data3/fu2/exampletransfer/
| tee /g/data3/fu2/fpsync_16_node_10T_test.out
```

- Run fpsync in a screen or tmux session
- tee stdout/stderr to a text file for review
Medium Scale Test (10T, 100 000 files)

- **Medium Scale Test – fpsync, 16 nodes**
 - 16 Nodes, 512 Partitions (concurrent sync jobs)
 - 10T, 100000 files copied
 - 52 Minutes

Syncing /g/data1/fu2/exampledata/Bin1/Bin1A => /g/data3/fu2/exampletransfer/

====> Job name: exampletransfer-1473159046-27455
====> Start time: Tue Sep 6 20:50:53 AEST 2016
====> Concurrent sync jobs: 512
====> Workers: r10 r11 r12 r13 r14 r15 r16 r17 r18 r20 r21 r22 r23 r24 r25
====> Shared dir: /g/data3/fu2/fpsync_work
====> Temp dir: /g/data3/fu2/fpsync_tmp
====> Max files per sync job: 200
====> Max bytes per sync job: 20480000000
====> Rsync options: "-aAXS --numeric-ids"
====> Use ^C to abort, ^T (SIGINFO) to display status
====> Analyzing filesystem...
====> [QMGR] Starting queue manager...
<= [QMGR] Job 29881:r18 finished
<= [QMGR] Job 2597:r13 finished
<= [QMGR] Job 2172:r12 finished
<= [QMGR] Done submitting jobs. Waiting for them to finish.
<= [QMGR] Queue processed
<= Parts done: 511/511 (100%), remaining: 0
<= Rsync completed without error.
<= End time: Tue Sep 6 21:42:03 AEST 2016
Medium Scale Test (10T, 100 000 files)

- Medium Scale Test – dcp, 16 nodes
 - 10TB
 - 100,000 x 100MB files
 - dcp only needs the number of processes to run, and the hosts to run on
 - Typically use all 16 cores per node, 16

```bash
# module load dcp/1.0-NCI2
# mpirun --allow-run-as-root -np 256 -H r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25 / apps/dcp/1.0-NCI2/bin/dcp2 -p /g/data1/fu2/examledata/Bin1/Bin1A / g/data3/fu2/exampletransfer/
#
```

- Run dcp in a screen or tmux session
- tee stdout/stderr to a text file for review
Medium Scale Test (10T, 100 000 files)

- Medium Scale Test – dcp, 16 nodes
 - 16 Nodes, 256 Processes
 - 10T, 100000 files copied
 - 10 minutes, 16 seconds.

[2016-09-06T17:07:30] [0] [../../../src/dcp2/handle_args.c:297] Walking/g/data1/fu2/exampledata/Bin1/Bin1A
[2016-09-06T17:07:40] [0] [../../../src/dcp2/dcp2.c:194] Creating directories.
 level=6 min=0 max=1 sum=1 rate=152.188099/sec secs=0.006571
 level=7 min=0 max=8 sum=10 rate=260.205469/sec secs=0.038431
 level=8 min=0 max=53 sum=100 rate=360.595619/sec secs=0.277319
 level=6 min=0 max=0 sum=0 rate=0.000000/sec secs=0.000230
 level=7 min=0 max=0 sum=0 rate=0.000000/sec secs=0.000034
 level=8 min=0 max=0 sum=0 rate=0.000000/sec secs=0.000023
 level=9 min=59 max=11772 sum=100000 rate=1617.795179/sec secs=61.812522
[2016-09-06T17:08:42] [0] [../../../src/dcp2/dcp2.c:801] Copying data.
[2016-09-06T17:16:26] [0] [../../../src/dcp2/dcp2.c:1165] Setting ownership, permissions, and timestamps.
[2016-09-06T17:17:46] [0] [../../../src/dcp2/dcp2.c:1505] Syncing updates to disk.
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:124] Started: Sep-06-2016,17:07:30
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:125] Completed: Sep-06-2016,17:17:46
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:126] Seconds: 615.986
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:127] Items: 100111
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:128] Directories: 111
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:129] Files: 100000
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:130] Links: 0
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:136] Rate: 15.851 GB/s (10484019363840 bytes in 615.986 seconds)
Medium Scale Test (10T, 100 000 files)

- Medium Scale Test – dcp vs fpsync, 16 nodes
- Aggregate OST throughput

Source Filesystem: Gdata1 – 25.92GB/sec Read peak

Destination Filesystem: Gdata3 – 18.62GB/sec Write peak
Medium Scale Test

Medium Scale Test – dcp vs fpsync

- 10TB
- 100,000 x 100MB files
- 16 Nodes

Results

- Fpsync – 52 Minutes
- dcp – 10 Minutes, 16 Seconds

What about Fpsync, re-run with no changes?

- 2nd pass Fpsync, no data changes – 3 Minutes, 33 Seconds

But...

- Beware of potential partition imbalance with fpsync if planning a 2 phase transfer, ie bulk data staged into place in the background, then ‘offline’ differential sync run.
- A large number of ”new files” may end up in few bins for the differential sync, which will result in just a few rsync processes doing the work.
Large Scale Test (50T, 500 000 files)

- **Large Scale Test – dcp, 16 nodes**
 - 50TB
 - 500,000 x 100MB files

module load dcp/1.0-NCI2
mpirun --allow-run-as-root -np 256 -H r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25 /apps/dcp/1.0-NCI2/bin/dcp2 -p /g/data1/fu2/examledata/Bin1 /g/data3/fu2/exampletransfer/
#
Large Scale Test (50T, 500 000 files)

- Large Scale Test – dcp, 16 nodes
 - 16 Nodes, 256 Processes
 - 50T, 500 000 files copied
 - 41 minutes, 10 seconds.

```plaintext
[2016-09-06T10:36:22] [0] [../../../src/dcp2/handle_args.c:297] Walking /g/data1/fu2/examledata/Bin1
  level=5 min=0 max=1 sum=1 rate=16.317455/sec secs=0.061284
  level=6 min=0 max=4 sum=5 rate=281.455356/sec secs=0.017765
  level=7 min=0 max=23 sum=50 rate=339.404297/sec secs=0.147317
  level=8 min=0 max=105 sum=500 rate=561.026242/sec secs=0.891224
  level=9 min=0 max=0 sum=0 rate=0.000000/sec secs=0.000504
  level=5 min=0 max=0 sum=0 rate=0.000000 secs=0.000195
  level=6 min=0 max=0 sum=0 rate=0.000000 secs=0.000048
  level=7 min=0 max=0 sum=0 rate=0.000000 secs=0.000055
  level=8 min=0 max=0 sum=0 rate=0.000000 secs=0.000053
  level=9 min=1410 max=11169 sum=500000 rate=5297.825804 secs=94.378339
[2016-09-06T10:38:06] [0] [../../../src/dcp2/dcp2.c:801] Copying data.
[2016-09-06T11:15:43] [0] [../../../src/dcp2/dcp2.c:1165] Setting ownership, permissions, and timestamps.
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:1505] Syncing updates to disk.
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:126] Seconds: 2479.272
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:127] Items: 500556
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:129] Files: 500000
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:130] Links: 0
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:132] Data: 47.676 TB (52420096819200 bytes)
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:136] Rate: 19.691 GB/s (52420096819200 bytes in 2479.272 seconds)
```
Large Scale Test (50T, 500,000 files)

- Large Scale Test – dcp, 16 nodes
- OSS Activity

Source Filesystem: Gdata1 – 26.55GB/sec Read peak

Destination Filesystem: Gdata3 – 19.39GB/sec Write peak
Large Scale Test (50T, 500,000 files)

- **Large Scale Test – MDS activity**

Create files phase
- 900K/sec getattr
- 140K/sec getxattr
- 250K/sec open/close

Set attribute Phase
- 400K/sec setattr
- 250k/sec setxattr

Copy data phase
XLarge Scale Test – dcp, 32 nodes

- 32 Nodes, 512 Processes
- 400T, 4 000 000 files copied
- 4 hours, 28 minutes.

```plaintext
Items walked 876930 ...
[2016-09-09T17:22:26] Items walked 2419596 ...
[2016-09-09T17:22:46] Items walked 3931513 ...

level=4 min=0 max=1 sum=1 rate=13.721943/sec secs=0.072876
level=5 min=0 max=6 sum=9 rate=54.749891/sec secs=0.164384
level=6 min=0 max=19 sum=50 rate=544.740274/sec secs=0.091787
level=7 min=0 max=78 sum=400 rate=449.789867/sec secs=0.889304
level=8 min=0 max=275 sum=4000 rate=1083.729755/sec secs=3.690957
level=9 min=0 max=0 sum=0 rate=0.000000/sec secs=0.002009

level=4 min=0 max=0 sum=0 rate=0.000000 secs=0.000183
level=5 min=0 max=1 sum=1 rate=261.849419 secs=0.003819
level=6 min=0 max=0 sum=0 rate=0.000000 secs=0.000055
level=7 min=0 max=537 sum=10000 rate=2702.808733 secs=3.699855
level=8 min=0 max=0 sum=0 rate=0.000000 secs=0.000235
level=9 min=6711 max=31566 sum=4000000 rate=7930.196887 secs=504.401096

Seconds: 16118.851
[2016-09-09T21:50:54] Items: 4014461
Directories: 4460
Files: 4010001
Links: 0
```
XLarge Scale Test (400T, 4 000 000 files)

- XLarge Scale Test – dcp, 32 nodes
- OSS Activity

Source Filesystem:
Gdata1 – 28.51GB/sec Read peak

Destination Filesystem:
Gdata3 – 24.05GB/sec Write peak
XLarge Scale Test (400T, 4 000 000 files)

- **XLarge Scale Test** – MDS activity

![Graph showing MDS activity](chart.png)

Gdata1 MDS (source) - Directory Walk

- 4.03 Million `getattr`s/sec
- 868K `getxattr`/sec

MDS Activity (1h) for `nmids1-gige.lustre-gige.ncbi`:

<table>
<thead>
<tr>
<th>Operation</th>
<th>avg</th>
<th>min</th>
<th>avg</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lustre Close operations</td>
<td>10.75 K</td>
<td>2.13 K</td>
<td>8.9 K</td>
<td>31.14 K</td>
</tr>
<tr>
<td>Lustre getattr operations</td>
<td>6.73 K</td>
<td>1.88 K</td>
<td>40.72 K</td>
<td>4.03 M</td>
</tr>
<tr>
<td>Lustre getxattr operations</td>
<td>318 K</td>
<td>48 K</td>
<td>100.59 K</td>
<td>868.51 K</td>
</tr>
<tr>
<td>Lustre mkdir operations</td>
<td>50 K</td>
<td>24 K</td>
<td>338.86 K</td>
<td>1.36 K</td>
</tr>
<tr>
<td>Lustre mknod operations</td>
<td>3 K</td>
<td>3 K</td>
<td>455.26 K</td>
<td>1.5 K</td>
</tr>
<tr>
<td>Lustre Open operations</td>
<td>12.83 K</td>
<td>2.09 K</td>
<td>5.14 K</td>
<td>40.31 K</td>
</tr>
<tr>
<td>Lustre rename operations</td>
<td>20 K</td>
<td>0 K</td>
<td>6.36 K</td>
<td>156 K</td>
</tr>
<tr>
<td>Lustre rmdir operations</td>
<td>0 K</td>
<td>0 K</td>
<td>9.025 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Lustre setattr operations</td>
<td>26 K</td>
<td>0 K</td>
<td>270.56 K</td>
<td>12.94 K</td>
</tr>
<tr>
<td>Lustre setxattr operations</td>
<td>0 K</td>
<td>0 K</td>
<td>1.85 K</td>
<td>18 K</td>
</tr>
<tr>
<td>Lustre statfs operations</td>
<td>20 K</td>
<td>12 K</td>
<td>18.52 K</td>
<td>28 K</td>
</tr>
<tr>
<td>Lustre sync operations</td>
<td>6 K</td>
<td>4 K</td>
<td>21.28 K</td>
<td>212 K</td>
</tr>
<tr>
<td>Lustre unlink operations</td>
<td>5 K</td>
<td>0 K</td>
<td>4.88 K</td>
<td>44 K</td>
</tr>
</tbody>
</table>
Results Comparison

Copy Time vs Data Copied

- **cp**
 - 1 Node
 - 1 Process

- **Rsync**
 - 1 Node
 - 1 Process

- **FPsync**
 - 16 Nodes
 - 512 Partitions

- **dcp2**
 - 16 Nodes
 - 256 Processes

- **dcp2**
 - 32 Nodes
 - 512 Processes

* Indicates additional tests not included in presentation for comparison purposes
NCI Approach to Data Migration

Data Migration Process
NCI approach for a typical project level data migration

- Set Quota on Destination Filesystem
- Stop NFS exports for project directory being relocated
- Move project into restricted access source migration directory
 - Root only accessible directory with obvious name
 - drwx------ 5 root root 4096 Mar 10 02:53 migration_in_progress_g1_to_g3
 - mv /g/data1/projectID /g/data1/migration_in_progress_g1_to_g3
- Target directory is similarly configured – root access only
- Break up project contents (usually on first level subdir) into smaller dcp runs
- Compare / Checksum source and destination
 - Build a list of all files in both source and dest using find with printf, Combine lists, awk | sed | sort. Diff output
 - Run fpart and feed NCI custom built MPImd5sum tool.
- Correct any mismatched files – create a filelist with paths, split the list, use rsync. Typically none or very few files need re-sync.
- Move data out of restricted target directory on destination filesystem
- Re-establish NFS exports
– Data Migration in Practice - example

• September 2015
• 2.4PB Project, migrated from Gdata1 to Gdata3
• Duration includes all stages (Data Copy and Verify)

• Start: 1800 Tues 8 Sept 2015
• End: 1330 Thurs 10 Sept 2015
• Duration: 43h 30m
• Data Copied: 2473TB
• Items: 39255806 (39.26 Million)
Encountered a bug in dcp2, fix committed upstream.
– **HSM Integration**
 - If the data is part of a Lustre HSM system (dual state), how do we avoid re-writes on a shared tape system.
 - If the data is migrating offline (tape resident), how do we avoid recalling all data from tape.
 - Need to test both scenarios.

– **Improve scalability of Validation Processes**
 - Test dcmp (distributed compare) as part of the fileutils.io suite

– **Build dedicated Migration /Filesystem Load Test Cluster**
 - Gdata1 will be decommissioned late 2016 – early 2017.
 - Reuse 44x OSSes from gdata1 when decommissioned
 - OSSes are Dell R620 Dual E5-2620, 6C, 2.0GHz, 256GB RAM, FDR Interconnect
 - Rebuild as IO Load Test and Migration Cluster
Questions ?
Extra Slides
FPsync slow ramp

- FPsync has a gradual (gentle) ramp. 16 node, 50T, 500 000 files
- Sunday evening, very little background IO. Fpsync achieving 5.5GB/sec.
Filesystem Stall

- Large Scale Test – dcp, 16 node, 400T, 4Mill. files - BRW Sizes
- 1x OSS in Gdata1 is in heavy IO wait, all processes affected.

Zabbix event ID 960602: Wed 7 Sept 2016 - 00:38

Trigger: Disk I/O is overloaded on noss62-gige.lustre-gige.nci

Item values: CPU iowait time (noss62-gige.lustre-gige.nci:system.cpu.util[,iowait]): 67.66 %
Memory Errors on Node

- **MCE / ECC Correctable errors**
 - High Correctable memory error count detected by system monitoring
 - Occurred during September 2015 migration example
 - Multi-petabyte migration separated into smaller dcp jobs to minimize impact of hardware failure.
 - Node removed from service
 - Affected job restarted to exclude node

```
compute r9: STATUS 8c000048000800c2 MCGSTATUS 0
compute r9: MCGCAP 1000c14 APICID 0 SOCKETID 0
compute r9: CPUID Vendor Intel Family 6 Model 45
compute r9: Hardware event. This is not a software error.
compute r9: MCE 4
compute r9: CPU 0 BANK 5
compute r9: MISC 21400e0e86 ADDR 17b81ad80
compute r9: TIME 1441704575 Tue Sep  8 19:29:35 2015
compute r9: MCG status:
compute r9: MCI status:
compute r9: Corrected error
compute r9: MCI_MISC register valid
compute r9: MCI_ADDR register valid
compute r9: MCA: MEMORY CONTROLLER RD_CHANNEL2_ERR
compute r9: Transaction: Memory read error
```