CROSS-TIER UNIFIED NAMESPACE

Johann Lombardi, Extreme Storage Architecture & Development, Intel
LAD’18, France
NOTICES AND DISCLAIMERS

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate. Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as property of others.

© 2018 Intel Corporation.
What this talk is about

- Multi-tier integration
 - Scale-out object store / DAOS
 - Parallel File System (PFS) / Lustre
- Expose unified namespace to end users
- Efficient dataset migration

What this talk is not about

- Burst buffers or transparent caching
- DAOS internals
 - Ping me separately if you are interested in the open-source DAOS project
- A comparison between Lustre and DAOS
Targeted Storage Architecture

- **Compute Nodes**
- **Gateway Nodes**
- **DAOS Nodes**
- **Lustre OSS & MDS Nodes**
- **PFS Tier**

- **Scale-out Object Store Tier**
- **Dataset Migration**

- DAOS Protocol
- I/O Forwarding Protocol
- Lustre Protocol

The information on this page is subject to the use and disclosure restrictions provided on Page 2 of this document.
Distributed Async Object Storage

HPC Workflow

DAOS Storage Engine
Open Source Apache 2.0 License

3rd Party Applications
Rich Data Models
Storage Platform
Storage Media

Relaxed POSIX I/O
HDF5
Apache Arrow
SQL
...

PMDK
SPDK

SCM
NVMe

Control Plane
Data Plane

Copyright © 2018 Intel® Corporation
Distributed Async Object Storage

3rd Party Applications
- Rich Data Models
 - Relaxed POSIX I/O
 - HDF5
 - Apache Arrow
 - SQL
 - ...
Unified Namespace Concept

Regular Lustre directories & files
- HDF5 Container
- DAOS POSIX Container
- DAOS MPI-IO Container

/mnt/prod
 ├── users
 │ └── Buzz
 │ └── .shrc
 │ └── moon.mpg
 ├── libs
 │ ├── mkl.so
 │ └── hdf5.so
 └── projects
 ├── Apollo
 └── Gemini
 └── Simul.out
 └── EA:CUUID

 └── Result.dn
 └── EA:CUUID

 └── Simul.h5
 └── EA:CUUID

 for file/dir with special extended attribute (EA)
What’s really stored in the PFS?

Regular Lustre directories & files
- HDF5 Container
- DAOS POSIX Container
- DAOS MPI-IO Container

```
/mnt/prod
  users
    Buzz
      .shrc
      moon.mpg
    mkl.so
    hdf5.so
  libs
  projects
    Apollo
    Gemini
      Simul.h5
      Result.dn
      Simul.out
      EA: CUUID
      EA: CUUID
      EA: CUUID
```

Empty file/dir!
Unified Namespace Implementation – POSIX IOF

- HDF5
- Apache Arrow
- Interception Library
- DAOS POSIX
- POSIX I/O Forwarding FUSE Daemon

Compute Node

- DAOS Client Library
- DAOS

Gateway Nodes

- POSIX I/O Forwarding Service
- Lustre Client
- Lustre
Use Case: Readdir Lustre Directory

1. readdir

2. lookup (intent=readdir)

3. getxattr

4. readdir results

DAOS

Lustre protocol

FUSE
demon

System call
Use Case: Readdir POSIX Container

1. readdir

2. lookup (intent=readdir)

3. getxattr

4. readdir (UUID)

5. readdir results

Application

IOF FUSE DAEMON

Lustre

DAOS

Lustre protocol

DAOS protocol

System call
Use Case: DAOS-aware I/O Middleware

1. getxattr
2. lookup (intent=getxattr)
3. return UUID
4. DAOS API (UUID)
Special File/Dir Representation

Regular Extended Attribute (EA)

- Portable
- Performance Impact
 - Extra EA fetch on every lookup
- Can't prevent Lustre file/dir from being created under the special directory

Special LOV EA

- Not Portable
- Minimal Performance Impact
 - No extra RPC
- Prohibit regular file/dir creation

```
Lustre Client                                MDTs
```

```python
fd = open(apollo/simul.out)
fgetxattr(fd, DAOS_EA)
```

```
Lustre Client                                MDTs
```

```python
fd = open(apollo/simul.out)
fgetxattr(fd, LOV_EA)
```
Specific data mover

- Format conversion
 - Middleware-dependent
 - Middleware-agnostic

- Explore how to use layout swap functionality

Integration with Lustre Client Container Image (CCI)

- Local /diskfs image mounted transparently on Lustre client
 - Written back to OSTs
 - High IOPS per client since MDTs not involved

- Accelerate migration of POSIX containers
Summary

Lustre change proposal

- Extend LOV EA
 - New layout type to point at external tier
 - Generic feature based on UUID
 - Can be integrated with any scale-out object stores
 - Opportunity to leverage layout swap functionality for cross-tier migration

- Effort tracked in LU-11376
 - Goal is to merge feature upstream
 - Feedback is welcomed!

Resources

- POSIX I/O Forwarding
 - https://github.com/daos-stack/iof

- DAOS
 - http://daos.io
 - https://github.com/daos-stack/daos

Contacts

- johann.lombardi@intel.com
- bruno.faccini@intel.com
- riaux jb@intel.com