

Lustre on clown drives

October 5th, 2023

Gaël DELBARY

Agenda

- An old Lustre filesystem
- « Saving private work Lustre filesystem »
- « Live and let die »

- Main property: users love me
 - Not purged
 - But quotas enforced
 - Mounted on all compute nodes
- Main weakness: I am old

Name	work
Vendor	HPE ClusterStor L300
Age	6 years old
#Clients	~6000
Used Capacity	5.7 PB (total 8.2 PB)
Inodes	300 millions
Lustre	2.12.4 (CS)
Write seq throughput	60 GB/s
OSS HDDs (GridRaid 8+2+1)	~1300 (Seagate 10TB)

_AD'23: Lustre on clown drives 06/10/2023

- H1 2022:
 - One drive failure, Raid recovery stale
 - OST blocking
 - Another drive is slow (unread sectors)
 - Kill slow drive
 - Raid recovery resuming
 - OST living back ②
- H2 2022: my end?
 - One drive failure, raid recovery stale, another slow drive killed
 - Raid recovery stale, another slow drive (second) repaired
 - Raid recovery definitively stale, a third slow drive
 - OST offline (~300 TB, ~5 millions of files unavailable)
 - Same severe issue on some OSTs

An old file systems: analysis

- Raid stack recovery stale on unreadable sectors
- Drives related?
 - Glist growing up, how far?
 - 200 HDDs, Glist > 0
 - 120 HDDs > BER (1 unreadable sector on 125TB read)
 - Begin a replacement process
 - Fall on others ost recovery stale
 - Worst:
 - Successfully replaced "bad BER" drive
 - 15 days later, one drive dies
 - Recovery stale on unreadable sector (not seen 15 days ago)
- Data "stays" 15 days on some/many HDD

- Unreadable sector = data not readable
- 2 plans:
 - Isolate unreadable sectors (-k fsck option)
 - Remap bad sector on write
- Tradeoff: high probability to corrupt final data
- How can we be sure?
 - Hypothesis: raid mapping is well known (link between raid volume sector and drives sector)
 - Raid volume sector = used by Idiskfs

File layout example:

```
[user@client delbar4c]# echo "iamalive" > iamstillalive
[user@client delbar4c] # lfs getstripe iamstillalive
iamstillalive
lmm stripe count: 1
lmm stripe size: 1048576
lmm pattern:
             raid0
lmm layout gen: 0
lmm stripe offset: 18
lmm pool:
               t1 tgcc ssu3
       obdidx
                    objid
                                   objid
                                                   group
         18
                  267211928
                                0xfed5498
```

How my object is stored on OST index 18 and where?

An old Lustre filesystem: Lustre internals

Find my FID

[user@client delbar4c]# lfs path2fid iamstillalive [0x6800c7805:0x16:0x0]

« Data layout » (Ifs getstripe)

obdidx objid objid group **18 267211928** 0xfed5498 0

Which OSS?

Which file on the OSS?

```
[root@oss210 ~] # debugfs -c -R "stat /0/0/d$((267211928%32))/267211928" /dev/md0 | grep -A1 -E
'(parent|EXTENTS)' | grep ':'| grep -v EXTENTS
debugfs 1.45.6.cr1 (14-Aug-2020)
/dev/md0: catastrophic mode - not reading inode or group bitmaps
   fid: parent=[0x6800c7805:0x16:0x0] stripe=0 stripe_size=1048576 stripe_count=1
(0):4515846334
```

- File data is on block 4515846334 from block device md0 on OSS210
- Reverse process (Idiskfs block->ost object->fid) makeable
 - Debugfs icheck command

« Saving private 2 work Lustre filesystem »

- Sum-up: one OST fully offline:
 - Disable osc on all clients (to "save" production), time to try to fix:
 - mgs# lctl set_param -P osc.osc_name.active=0
 - 2 HDDs killed (raid pool is degraded)
 - 1 slow drive (recovery stale):
 - Get bad sectors list (badblocks util) : ~100 sectors
 - Get back to ldiskfs: many raid spares, no data blocks, no fid impacted
 - Remap ~100 sectors:
 - dd of=/dev/ostblockdevice seek=badsector bs=4096 obs=4096 count=1 if=/dev/zero oflag=direct
 - Recovery continues but ... 1 other slow drive (recovery stale again):
 - Badblocks unable to read more than 80%
 - About 450 millions of blocks unreadable

Recovery plan

- Main idea: isolate write on this OST (users have to read datas):
 - Old readonly feature (LU-8200):
 - mount -t lustre /dev/'xxxx' -o rdonly_dev /mnt/'yyyy'
 - Kernel patches mandatory (luckily, inside Lustre ClusterStor version)
 - Only for tests ②
 - Removed in Lustre 2.15 (LU-12477)
 - Replaced by dm_flakey (nice kernel feature)
 - Not working with external journal
 - Disable object creation on mdt level (just in case):
 - mgs# lctl set_param -P osp.osc_name.max_create_count=0
 - Assemble in frozen mode (recovery blocked until I/O access)

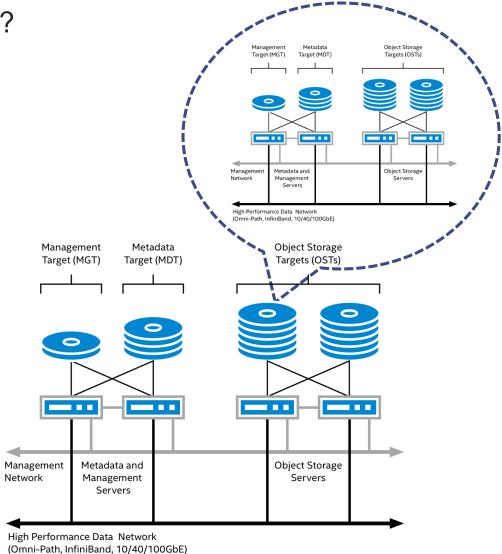
Recovery plan, continue

12

- ddrescue, one pass ~80% (like mdraid) during 2 days
- Evaluate number of files impacted
 - Mapping raid on 450 millions of blocks (20% non readable full device blocks)
 - Intersec with 2 missing drives
 - Takes months, needs compute resources
 - Result (1 week): ~20 millions of files impacted (min raid group 8+1 outside 2 missing)
- Can we save a bit more (add parity)?
 - Rely on ddrescue (20% of data remaining):
 - Complex and amazing tool
 - Multiple "smart" pass
 - 3 weeks later, 98.2% read success
 - 2 days later, mdadm killed the drive
 - Manually revival drive, unable to read more than 30%

<u>cea</u>

LAD'23: Lustre on clown drives 06/10/2023


Recovery: final step1

- Raid pool fully degraded (38/41): read occurred on missing member => panic ldiskfs!
- One cool thing, we have 98.2% of last failed drive
 - Insert loop device in raid pool
 - Fully corrupted Idiskfs device:
 - Unable to mount (block descriptors corrupted)
 - Binary analysis (dumpe2fs helpful):
 - Inode/block bitmap inside group descriptors (<=>)
 - Backups group descriptors invalids (not usable by e2fsck meta_bg related)
 - e2fsck need to rebuild corrupted group descriptors
 - Root cause:
 - old kernel (CentOS 7.6) = loop device 512 bytes
 - Mdraid mixes devices 512 and 4K sector size => not lovely
 - Resync started with bad sector size!

Recovery: final step 2

- Recovery full Idiskfs corruption, which can help?
 - E2fsck (to repair the corruption)
 - Lustre (of course ②)?
 - Lustre on Lustre?
 - Through loop devices
- Creating 38 loop images
 - We have one more (latest drive)
 - 39 is enough
 - Rely on CEA Lustre FS (store)
 - Flexibility (copy/backup fast)
 - 38 parallel ddrescue on duty
 - Same sector size

_AD'23: Lustre on clown drives 06/10/2023

Recovery: result part1

- Images creation duration: 24h (ddrescue rocks)
- Performance hurt:
 - Limit read_ahead
 - Adjust max_pages_per_rpc (64) related to chunk_size
 - Read sequential performance drops:
 - 3x slower (1.2 GB/s)
 - Enough for users
- Get time to analyze file corruption (e2fsck returns)
 - Figure out e2fsck corruption, silent corruption?
 - Robinhood:
 - Sha1 policy
 - Using DB Backup done before the incident
 - File only read (due to ost fake readonly mode)

Recovery: result part2

- Files corrupted: 9308/5 000 000
- A bit more, can we do better?
 - Winemaking?
 - Not grapes blend but drive images blend
 - Benefit: the best Idiskfs image with limited corruption
- We can:
 - Revive the 2 first drives
 - Assemble raid (not so easy, mdraid events, timestamps event)
 - Dumpe2fs full analysis
 - E2fsck analysis
 - Can play => loop devices

LAD'23: Lustre on clown drives 06/10/2023

Recovery: final way

- Found a "perfect" combination:
 - Adding one missing stripe parity on many files
 - Still group descriptor corruption
 - E2fsck handle it
 - Restore/fix lost+found objects on the write place
- Result: 6 instead of 9308
 - 6 files were also on others filesystems
 - One OST saved!
- Unfortunately (January 2023):
 - We have replaced ~100 drives
 - Supplier out of stock on this type of drive
 - Filesystem is going to die
 - Time plays against the production

17

AD'23: Lustre on clown drives 06/10/2023

3 « Live and let die »

<u>cea</u>

« Live and let die »

- No new drive = not able to save filesystem
- Adopt a different strategy: full fs migration
 - "Read useful" strategy
 - Tricky on almost dead drives (let mdraid remap unreadable sectors)
 - Large FS:
 - 300 millions inodes (thanks rbh-du)
 - 5.2 PB
 - 36 millions of hardlinks
 - Limit production impacts
- Workflow migration chain to build

_AD'23: Lustre on clown drives 06/10/2023

- We have to rely on some tools:
 - Robinhood (hardlinks list)
 - Rsync to sync hardlinks
 - MPIFileutils to sync data
- Issues:
 - Rsync:
 - no way to sync large tree (timelimit)
 - Hardlink mode is "monothread"
 - Robinhood hardlink resolution slow
 - MPIFileutils:
 - No hardlink support
 - Lustre xattr issue...

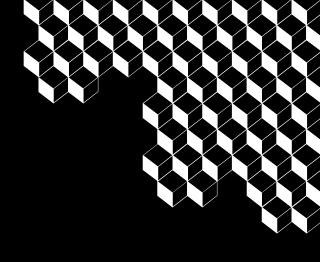
AD'23: Lustre on clown drives 06/10/2023 20

- MPIFileutils:
 - Patch to ignore hardlinks (rely on rsync!)
 - Lustre xattr compliant (commit 96a9fe7d2f49a9d6b3e28941bd51f33bef8af8ce), 0.11.1 included
 - Patch to build on RHEL8
- Robinhood:
 - Mariadb hardlink path resolution costly
 - Use fid hardlink (robinhood db) like source
 - Build a tree of files rsync compliant syntax
 - Thanks to O(1) with fid2path
 - Achieved 36 000 000 in 2 hours
- Rsync limited to one fid file
 - Run multiple rsync in parallel (2048)
 - Achieved 36 000 000 of hardlinks in 8 hours

- Macro steps to migrate a group or a container (multiple groups):
 - Production running: sync data/hardlinks
 - Day of migration:
 - Block connections to group/container on cluster
 - Save group jobs related to the migration
 - Check open_files on MDTs
 - Set safeguard unix rights on top directories
 - Parallel diff (walking metadatas)
 - Delta parallel sync
 - PAM namespace modification
 - Remove safeguard unix rights
 - Re-enable group/container access
- Performance: 100 000 000 inodes in 8h

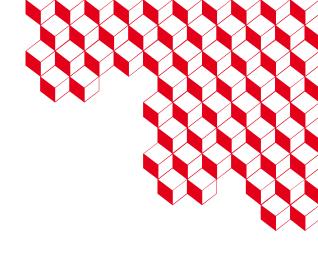
Summary

- "successfully" copied the filesystem with clown drives
- Lustre versatility
- Strong parallel opensource tools
- Old HDD : Glist monitoring (IA model running)
- Issues hit:
 - E2fsck pass-1d stuck (1 year to finish)
 - Mballoc (<u>LU-13291</u>)
 - I_tunedisk (<u>LU-12029</u>)
 - RO ost (<u>LU-12477</u>)
 - MPIFileutils (lustre xattr)
 - Fiemap, salb corruption (<u>LU-17110</u>)



23

AD'23: Lustre on clown drives 06/10/2023


CEA / DAM Ile-de-France

Bruyères-le-Châtel 91297 Arpajon Cedex France

gael.delbary@cea.fr

Standard. + 33 1 69 26 40 00

Questions?

CEA / DAM Ile-de-France

Bruyères-le-Châtel 91297 Arpajon Cedex France gael.delbary@cea.fr Standard. + 33 1 69 26 40 00