
Artem Blagodarenko

Efficient Storage Utilization Using Client-side Data Compression

whamcloud.com

Let’s picturize

whamcloud.com

Client-side data compression

►Client-side data compression (CSDC) is a new feature for the Lustre file system. This
feature provides transparent (for users, configured by admins) compression and
decompression of data stored on the file system.

►The feature is simple to use (once activated) and can be set on a per-file/directory
or per-component basis (each component has its own compression parameters).

►Multiple compression algorithms are supported (lzo, lz4, lz4hc and gzip now). Easy
to expand framework to add new compression algorithms.

►Compression scales with multiple clients. Each request is being compressed
independently, so the process is already parallelized and CPUs cores scalable.

►Does not depend on ZFS compression (like in Hamburg University’s project). No
changes to LDISKFS on-disk data structures. Compression mostly (see next slides)
done on the client side.

whamcloud.com

Usage
► Early adopters can enable CSDC with the following

command:

sudo lustre/utils/lctl set_param -n
llite.*.enable_compression 1
• This can be made permanent by utilizing the -P option for

the set_param command.
► The lfs setstripe command is used to configure compression

on the file system:

lfs setstripe –E eof -Z lz4:5 --compress-
chunk=512k <dir|new_file>

$ lfs getstripe <file> | grep compr
lcme_compr_type: lz4
lcme_compr_lvl: 5
lcme_compr_chunk_kb: 512
lmm_pattern: raid0,compress

• -Z or --compress
Accepts 2 values separated by a colon
First value: compression algorithm
• lzo (no compression level accepted)
• lz4
• lz4hc
• gzip
Second value: compression level (optional)
• Integer values: 0 through 9
• (0) fastest compression time
• (9) best compression ratio
Example:
• -Z lz4:5

• --compress-chunk
• Defines compression chunk size
• Accepts string values
• Minimum value: 64k
• Maximum value: maximum stripe size
• Default value: 64k

whamcloud.com

Compression aware tools
lfs find - used to search the lustre file system like
‘POSIX’ find with additional options (see lfs find
man page for those options)
• --comp-flags=[^]compress to locate

file with/without compressed components
• --comp-flags=[^]nocompr to locate

file with/without setting component
compress preference

• [!] --layout=compress to locate file
with/without compressed components

• [!] --compress-type=<type> find
files with/without specified compress
algorithm

• [!] --compress-level=[+-
]<level> find files with/without specified
compress level

 Examples:
Find already compressed files
$ lfs find --comp-flags=compress <dir>
Find compressed files with type other
than lz4 (e.g. to recompress with lz4 in background)
$ lfs find --compress-type=^lz4 <dir>
Find compressed files with level < 5 (e.g. to
recompress to a higher level)
$ lfs find --compress-level=-5 <dir>

whamcloud.com

Data Compression Scheme

Page cache

Request

Buffer (compressed data)

Compressed
request

OST object

Non-compressed
data

Compressed
data

Free
space

struct ll_compr_hdr {
 __u64 llch_magic:48; /* LLCH_MAGIC */
 __u8 llch_header_size; /* for future extensions */
 __u8 llch_exta_flags;
 __u8 llch_compr_type; /* LLCH_COMP_GZIP, LLCH_COMP_LZ4, */
 __u8 llch_compr_level:4; /* per-algorithm mapped level */
 __u8 llch_flags:4;
 __u8 llch_chunk_log_bits;
 __u32 llch_compr_size; /* bytes of compressed data */
 __u32 llch_uncompr_csum; /* crc32 of raw data, or 0 */
 __u32 llch_compr_csum; /* crc32 of compressed data, or 0 */
 __u32 llch_hdr_csum; /* crc32 of magic..compr_csum, or 0 */
};

whamcloud.com

Compression algorithms

► In-kernel LZO algorithm always available for all client
kernel versions

►LZ4/LZ4H, GZIP deployed with kernel or Lustre FS
(preferable)

►Up to 255 compression types are available for extention
►Any heuristic for compression params is possible

Ok?

From component

LZ4FAST

LZO (always in the kernel)

No compression

Ok?

Ok?

Compress chunk

out > in

Store uncompressed Store compressed

yes no

yes

yes

yes

whamcloud.com

LDISKFS allocator changes for improved data density

►Compression will always reduce data size by at least one 4KB block, or it is skipped
►OST will write chunks starting at file logical offset for each chunk to LDISKFS
• Client must read and write whole chunks starting at an even multiple of the chunk

offset
►From LDISKFS perspective compressed chunks have holes between them in

file/block allocation
• For example, 64KiB chunk compressed to 24KiB the next chunk will have a 40KiB

"hole” from LDISKFS logical offset perspective
►Optimize on-disk blocks to be contiguous
►Client sends OBD_BRW_COMPRESSED flag with each compressed write RPC
►Flag informs allocator that holes will never be filled, and should pack chunks densely

whamcloud.com

LDISKFS changes to avoid allocation holes in files
0 64 128

LDISKFS optimization. These blocks normally reserved for multi-client interleaved writes, but in case of
compression these blocks will be unused. Gaps decrease read performance (for HDDs) and add fragmentation.

LDISKFS receives OBD_BRW_COMPRESSED flag and disables the optimization.
Blocks are being written sequentially. This optimizes writing and reading.

0 64

Newly written blocks Free blocks

128

diskchunk

Partial Chunk Operations Problem

• Read/write is always chunk-aligned
• Reading request extended to the chunk bounds using

readahead
• Write path is complicated: once data written, the

whole chunk should be changed on a rewrite
• All the data for the compression chunk must be in the

page cache to do compression
• All required pages should be read, and they will be

clean, non-dirty cache pages can be cleared from
cache at any time

• In case witting data is not page-aligned,
ll_prepare_partial_page() reads the rest of the page
from disk

Compressed
chunk

Partial Chunk Rewrite Server-Side Solution
Application OSC target OSD

Writing unaligned data
prepare partial page

Read chunk

Decompress chunk
page data

Request for page-aligned
chunk-unaligned writing

Read chunk

Decompress chunkDeliver non-compressed
data

Compress chunk

write chunk
*ldlm lock for the whole chunk

whamcloud.com

Some CSDC-related details

►Store compression info in LMA2 EA(on the server). Useful for utilities like a LFSCK.
►Allow raw access to compressed data for lfs migrate.
► LU-16837 handle unknown layout component. If lustre client encounters unknown layout

component pattern in a mirror file, it makes client mark this mirror as invalid and skip it.
►Disable CPU-access features for RDMA only pages.
►Add support for encryption plus compression – compression (obviously) goes first!
►Avoid picking compressed mirror for older client which does not support compressed

layout component.

data-based file size

Real file Size
object size should be set

https://jira.whamcloud.com/browse/LU-16837

whamcloud.com

Testing. Configuration
lscpu
Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 52 bits physical, 57 bits virtual
 Byte Order: Little Endian
CPU(s): 224
 On-line CPU(s) list: 0-223
Vendor ID: GenuineIntel
 Model name: Intel(R) Xeon(R) Platinum 8480CL
 CPU family: 6
 Model: 143
 Thread(s) per core: 2
 Core(s) per socket: 56
 Socket(s): 2
 Stepping: 7
 CPU max MHz: 3800.0000
 CPU min MHz: 800.0000
 BogoMIPS: 4000.00

~]# cat /etc/es_install_version
EXAScaler SFA Rocky AI400X2
[root@ai400-004 ~]# lctl get_param version
version=2.14.0_ddn101_8_g02a1f63

llite.*.max_read_ahead_mb" = 2048
"obdfilter.*.brw_size" = 16
"osc.*.max_dirty_mb" = 512
"osc.*.max_pages_per_rpc" = "1M"
"osc.*.max_rpcs_in_flight" = 8
"osd-ldiskfs.*.read_cache_enable" = 0
"osd-ldiskfs.*.writethrough_cache_enable" =
0

whamcloud.com

Testing. Datasets

Name Link Area
Kits19 https://github.com/neheller/kits19 Image segmentation (medical)

ImageNet (TF Records) https://image-net.org/challenges/LSVRC/2012/2012-downloads Image classification

COCO https://cocodataset.org/#download Object detection (heavy
weight)

NOAA https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gd
as.20230912/ Weather data

Linux source https://github.com/torvalds/linux Source code

GPT3 Checkpoint https://huggingface.co/TurkuNLP/gpt3-finnish-13B AI/ML

Wikipedia https://drive.google.com/drive/u/0/folders/1oQF4diVHNPCclyk
wdvQJw8n_VIWwV0PT NLP

https://github.com/neheller/kits19
https://image-net.org/challenges/LSVRC/2012/2012-downloads
https://cocodataset.org/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.20230912/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.20230912/
https://huggingface.co/TurkuNLP/gpt3-finnish-13B
https://drive.google.com/drive/u/0/folders/1oQF4diVHNPCclykwdvQJw8n_VIWwV0PT
https://drive.google.com/drive/u/0/folders/1oQF4diVHNPCclykwdvQJw8n_VIWwV0PT

whamcloud.com

Compression ration

whamcloud.com

Throughput

whamcloud.com

Throughput/CPU

whamcloud.com

(CPU Usage / throughput) * compression ration

whamcloud.com

Testing results observations

►The approach works.
►Doing buffered, single threaded I/O, compression will have limited performance

costing.
►There are data types that leverage from CSDC more than others.
►Compression doesn't improve throughput now. This will be optimized though (LU-

16897)
►There is known issue that requires to skip the last chunk compression. It is fixed

now but hasn’t present in the testing.
► Larger chunks improve compression, but higher read-modify-write overhead

https://jira.whamcloud.com/browse/LU-16897
https://jira.whamcloud.com/browse/LU-16897

whamcloud.com

Status

►The feature is planned to be available with the Lustre FS 2.17
release

►Major functionality development is finished
►Prior testing is finished, more enhancing testing it ongoing

Thank You!
Questions?

