LAD

Lustre Admin—
Dev Workshop

"'7‘::: leaux France 04/10 - 06/10/2023 ,@

7/

Whamcloud

Efficient Storage Utilization Using Client-side Data Compression

Artem Blagodarenko

S

7/

Let’s picturize
Whamcloud

] = 3 =
A | / § A R §
,// / ,/ *,/ ,/ *,/; ‘,/ ,/
/ / / / / / /
Sl Nl N S S T\

whamcloud.com

Client-side data compression

Client-side data compression (CSDC) is a new feature for the Lustre file system. This
feature provides transparent (for users, configured by admins) compression and
decompression of data stored on the file system.

The feature is simple to use (once activated) and can be set on a per-file/directory
or per-component basis (each component has its own compression parameters).

Multiple compression algorithms are supported (lzo, 1z4, 1z4hc and gzip now). Easy
to expand framework to add new compression algorithms.

Compression scales with multiple clients. Each request is being compressed
independently, so the process is already parallelized and CPUs cores scalable.

Does not depend on ZFS compression (like in Hamburg University’s project). No

changes to LDISKFS on-disk data structures. Compression mostly (see next slides)
done on the client side.

Usage

Early adopters can enable CSDC with the following e -Zor--compress
command: Accepts 2 values separated by a colon
sudo Lustre/utils/Lctl set _param -n First value: compression algorithm
LLite.*.enable compression 1 * |zo (no compression level accepted)
- * 1z4
This can be made permanent by utilizing the -P option for e |z4hc
the set_param command. . gzip
The Ifs setstripe command is used to configure compression Second value: compression level (optional)
on the file system: * Integer values: 0 through 9
Lfs setstripe -E eof -Z Lz4:5 --compress- * (0) fastest compression time
chunk=512k <dir‘/new file> * (9) best compression ratio
. c Example:
$ Lfs getstripe <file> | grep compr . 7 IIOZ4.5
Lcme _compr type: Lz4 « --compress-chunk
Lcme _compr Lvl: 5 * Defines compression chunk size

e Accepts string values
* Minimum value: 64k
Lmm_pattern: raid@, compress * Maximum value: maximum stripe size

e Default value: 64k

Lcme _compr chunkR _Rb: 512

Compression aware tools

Ifs find - used to search the lustre file system like Examples:

man page for those options) $ 1fs find --comp-flags=compress <dir>

* —--comp-flags=["]compress to locate

, _ _ Find compressed files with type other
file with/without compressed components

than 1z4 (e.g. to recompress with 1z4 in background)
* —-comp-flags=["]nocompr to locate

file with/without setting component
compress preference

$ 1fs find --compress-type="1z4 <dir>

Find compressed files with level <5 (e.g. to

_ recompress to a higher level)
* [!] --layout=compress to locate file

with/without compressed components $ 1fs find --compress-level=-5 <dir>

* [!] —--compress-type=<type> find
files with/without specified compress
algorithm

* [!] —-—-compress-level=[+-

] <level> find files with/without specified
compress level

S

Data Compression Scheme 7
Whamcloud

data data space

struct Il_compr_hdr {
/* LLCH_MAGIC */

__ub4 llch_magic:48; _
Request l __u8 llch_header_size; /* for future extensions */
__u8 lich_exta_flags;
__u8 lich_compr_type; /* LLCH_COMP_GZIP, LLCH_COMP_Lz4, */

__u8 llch_compr_level:4; /* per-algorithm mapped level */
__u8 lich_flags:4;

__u8 lich_chunk_log_bits;

__u32llch_compr_size; /* bytes of compressed data */

Compressed l _ __u32 llch_uncompr_csum; /* crc32 of raw data, or 0 */
request __u32llch_compr_csum; /* crc32 of compressed data, or 0 */

__u32llch_hdr_csum; /* crc32 of magic..compr_csum, or 0 */

whamcloud.com

Buffer (compressed data)

S

Compression algorithms s

Whamcloud
From component
7
“ Compress chunk
LZAFAST yes no
— ok2__— " w
Store uncompressed Store compressed

LZO (always in the kernel)

» In-kernel LZO algorithm always available for all client

yes :
« kernel versions

» LZ4/LZ4H, GZIP deployed with kernel or Lustre FS
(preferable)

O » Up to 255 compression types are available for extention

No compression

» Any heuristic for compression params is possible

whamcloud.com

LDISKFS allocator changes for improved data density Sj}
Whamcloud

» Compression will always reduce data size by at least one 4KB block, or it is skipped

» OST will write chunks starting at file logical offset for each chunk to LDISKFS

* Client must read and write whole chunks starting at an even multiple of the chunk
offset

» From LDISKFS perspective compressed chunks have holes between them in
file/block allocation

* For example, 64KiB chunk compressed to 24KiB the next chunk will have a 40KiB
"hole” from LDISKFS logical offset perspective

» Optimize on-disk blocks to be contiguous
» Client sends OBD BRW_ COMPRESSED flag with each compressed write RPC

» Flag informs allocator that holes will never be filled, and should pack chunks densely

whamcloud.com

S

LDISKFS changes to avoid allocation holes in files s
; g Whamcloud
64

1 | 1

LDISKFS optimization. These blocks normally reserved for multi-client interleaved writes, but in case of
compression these blocks will be unused. Gaps decrease read performance (for HDDs) and add fragmentation.

LDISKFS receives OBD BRW COMPRESSED flag and disables the optimization.
Blocks are being written sequentially. This optimizes writing and reading.

0 64 128
s ooe

- Newly written blocks Free blocks

whamcloud.com

Partial Chunk Operations Problem

chunk

Read/write is always chunk-aligned

Reading request extended to the chunk bounds using
readahead

Write path is complicated: once data written, the
whole chunk should be changed on a rewrite

All the data for the compression chunk must be in the
page cache to do compression

All required pages should be read, and they will be
clean, non-dirty cache pages can be cleared from
cache at any time

In case witting data is not page-aligned,
ll_prepare_partial page() reads the rest of the page
from disk

disk

Compressed
chunk

Partial Chunk Rewrite Server-Side Solution

Application OSC target

Writing unaligned data
> prepare partial page

A 4

Read chunk

OSD

Decompress chunk

page data -

Request for page-aligned
chunk-unaligned writing

> Read chunk

Deliver non-compressed Decompress chunk
data

Compress chunk

write chunk

*Idlm Iockf for the whole chunk

Some CSDC-related details S:B

data based file size Whamcloud

_ — =

object size should be set

Real file Size

» Store compression info in LMA2 EA(on the server). Useful for utilities like a LFSCK.
» Allow raw access to compressed data for Ifs migrate.

» | U-16837 handle unknown layout component. If lustre client encounters unknown layout
component pattern in a mirror file, it makes client mark this mirror as invalid and skip it.

» Disable CPU-access features for RDMA only pages.
» Add support for encryption plus compression — compression (obviously) goes first!

» Avoid picking compressed mirror for older client which does not support compressed
layout component.

whamcloud.com

https://jira.whamcloud.com/browse/LU-16837

Testing. Configuration

Iscpu
Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual

Byte Order: Little Endian
CPU(s): 224
On-line CPU(s) list: 0-223
Vendor ID: Genuinelntel
Model name: Intel(R) Xeon(R) Platinum 8480CL
CPU family: 6
Model: 143

Thread(s) per core: 2

Core(s) per socket: 56
Socket(s): 2

Stepping: 7

CPU max MHz: 3800.0000
CPU min MHz: 800.0000
BogoMIPS: 4000.00

S

7/

Whamcloud

Ao mm i}

I i |
i /!

~|# cat /etc/es_install_version

EXAScaler SFA Rocky Al400X2
[root@ai400-004 ~]# Ictl get_param version
version=2.14.0_ddn101 8 g02a1f63

llite.*.max_read _ahead _mb" =2048
"obdfilter.*.brw_size" =16
"osc.*.max_dirty_mb" =512
"osc.*.max_pages_per_rpc" ="1M"
"osc.*.max_rpcs_in_flight" =8
"osd-Idiskfs.*.read_cache_enable" =0
"osd-Idiskfs.*.writethrough cache_enable" =
0

whamcloud.com

Testing. Datasets

Name

Link Area

Kits19

ImageNet (TF Records)

COCO

NOAA

Linux source

GPT3 Checkpoint

Wikipedia

https://github.com/neheller/kits19 Image segmentation (medical)

https://image-net.org/challenges/LSVRC/2012/2012-downloads Image classification

Object detection (heavy

https://cocodataset.org/#download el

https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gd
as.20230912/

Weather data

https://github.com/torvalds/linux Source code

https://huggingface.co/TurkuNLP/gpt3-finnish-13B Al/ML

https://drive.google.com/drive/u/0/folders/10QF4diVHNPCclyk

wdvQJw8n VIWwWVOPT NLP

https://github.com/neheller/kits19
https://image-net.org/challenges/LSVRC/2012/2012-downloads
https://cocodataset.org/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.20230912/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.20230912/
https://huggingface.co/TurkuNLP/gpt3-finnish-13B
https://drive.google.com/drive/u/0/folders/1oQF4diVHNPCclykwdvQJw8n_VIWwV0PT
https://drive.google.com/drive/u/0/folders/1oQF4diVHNPCclykwdvQJw8n_VIWwV0PT

S

Compression ration ’7
Whamcloud

Compression ratio
Higher is better

4.5

4

e ot
n w n

Compression ratio
N

non-compressed size / compressed size)

=
wn

[any

0

o

Kits19 ImageNet (TF Records) COCco Linux source GPT3 Checkpoint Wikipedia
Dataset

o

Mgzipl Mgzip6 Mgzip9 Wiz41 MWIz46 WIz49 Miz4fast1 Miz4fast 6 MWIz4fast9 MIzo

whamcloud.com

Throughput “7
Whamcloud

dcp throughput
Higher is better
16000 MiB/s

14000 MiB/s

12000 MiB/s

10000 MiB/s
8000 MiB/s
6000 MiB/s
4000 MiB/s
. II III I III II o 0 e Ill II IIIIIIIIIII

0 MiB/s

Throughput

Kits19 ImageNet (TF Records) COCO Linux source GPT3 Checkpoint Wikipedia
Dataset

mgzipl mgzip6 mgzip9 miz41 wmiz46 mIz49 miz4fast1 mlz4fast 6 miz4fast9 m®mIzo mnon_compression

whamcloud.com

Throughput/CPU fg}
Whamcloud

CPU Usage
Lower is better
40
35
30
25
53
(3}
)
® 20
D>
o
o
o
15
10
| I I
0
Kits19 ImageNet (TF Records) COCO Linux source GPT3 Checkpoint Wikipedia
Datset

Mgzipl Mgzip6 Mgzip9 Wiz41 WIz46 WIz49 mliz4fast1 Miz4fast6 MIz4fast9 MIzo Mnon_compression

whamcloud.com

S

CPU Usage / throughput) * compression ration 7
(ge / ghput) p el

(CPU Usage / throughput) * compression ratio
Higher is better

2500
2000

1500

Score

100

o

5

8

Kits19 ImageNet (TF Records) Ccoco Linux source GPT3 Checkpoint Wikipedia

Hgzipl Mgzip6 Mgzip9 mWiz41 MWIz46 MWIz49 miz4fast1 MWIiz4fast6 MIz4fast9 MIzo Mnon_compression

whamcloud.com

S

Testing results observations s
Whamcloud
» The approach works.

» Doing buffered, single threaded I/O, compression will have limited performance
costing.

» There are data types that leverage from CSDC more than others.
» Compression doesn't improve throughput now. This will be optimized though (LU-

16897)

» There is known issue that requires to skip the last chunk compression. It is fixed
now but hasn’t present in the testing.

» Larger chunks improve compression, but higher read-modify-write overhead

whamcloud.com

https://jira.whamcloud.com/browse/LU-16897
https://jira.whamcloud.com/browse/LU-16897

Status ‘3:5
Whamcloud

» The feature is planned to be available with the Lustre FS 2.17
release
» Major functionality development is finished

P Prior testing is finished, more enhancing testing it ongoing

whamcloud.com

S

7/

Whamcloud

Thank You!
Questions?

