
1

Cross-Realm Lustre Kerberos on Large
GPU clusters
Aurelien Degremont
LAD’23 - October 5-6, 2023

2

Reference platform: the NVIDIA SuperPod

• NVIDIA cluster solution for AI/ML workload

• Scales to hundreds of DGX nodes, made of
• 2 Xeon CPUs
• 8 NVIDIA GPU H100
• 2 TiB of RAM

• Connected with NVLink / Infiniband NDR

• Using Lustre filesystem via DDN Exascaler as one of the available storage solutions

3

Support Active Directory on SuperPOD

• As large GPU deployments are more and more common in enterprise deployments, there are needs for more security
and integration.

• Asks for Microsoft Active Directory support are more common since it is a de facto standard in enterprise
environment

• AD gives some benefits like:
• Managing accounts and passwords
• Centralizing the user management in one place

• Kerberos is the default Linux available protocol behind Active Directory

• So supporting AD means enabling Kerberos

• Objective here is not to limit that to login nodes but supporting it everywhere, both login and compute nodes, up to
Lustre!

• Improve the security posture, end-to-end

4

• Well-established authentication protocol

• Symmetric-key cryptography based

• Authentication is centralized in a KDC

• Kerberos manages:
• Identities (principals) like users or services
• Credentials (password or keytabs)
• Domains, named Realms.

• Benefits
• Keep user and password in one place
• Services can authenticate each others
• Single Sign on capability
• Federated environment (cross-realm)

• Supported by Lustre

What Is Kerberos?
How does it work?

KDC
(user db, passwords)

A Kerberos Realm

Service B
Keytab

Service A
Keytab

Client

User

Ticket
2. Authenticate with

tickets
Authenticate with

keytabs

KDC
(user db, passwords)

5

MDS

MGS

OSS

• Lustre trusts root anywhere on the network
• No client validation
• Servers trust provided UID/GID
• Anybody becoming root on client can access all data

• Use Kerberos to mitigate it

• Each service and host has its own keytabs
• Clients too
• Servers and clients can authenticate each other
• MDS validates users using their ticket

• Each Lustre component needs a Kerberos principal
• MGS: lustre_mgs@REALM
• MDS: lustre_mds@REALM
• OSS: lustre_oss@REALM
• Clients: lustre_root@REALM

Lustre and Kerberos
Why Kerberos?

Cluster Kerberos Realm

Keytab

Keytab

Keytab

Client

Keytab

User
Ticket

6

Lustre and Kerberos

• Then, Kerberos should be enable at each connection level, with
different flavors:

• null (default) no kerberos
• krb5n authentication only
• krb5a +header message integrity
• krb5i +bulk data integrity
• krb5p +message privacy (encrypted)

• We only focused on krb5n as other modes have a too large
performance impact.

MDS

MGS

Cluster Kerberos Realm

lustre_mgs@REALM

OSS

lustre_mds@REALM

lustre_oss@REALM

Client

lustre_root@REALM

How is Lustre working with Kerberos?

7

Test architecture

• We first ran a test deployment, that helped us identify some limitations.

• We tried to improve security and ease of use

Cluster Kerberos Realm

Enterprise AD Realm

Trust relationship

Login
Client MDS

MGS

OSS

KDC DNS LDAP

Active Directory

User Compute
Client

Compute
Client

Compute
Client

8

Improvement examples
Better credential caching and lookup (LU-16646)

• Credentials are cached on client and server side
• Lustre originally cached credentials in memory (MEMORY:) or in fixed location on disk (FILE:/tmp/krb5cc_*)

• Changed to rely on current system configuration (default_ccache_name, in krb5.conf)
• Enable caching credential, on server-side, in Kernel keyring.

• Credentials are searched for in hard-coded FILE:/tmp/krb5cc_<uid>
• They were guessable, not compatible with the security policy
• Not where SSH GSS store them

• Changed to rely on system current configuration (default_ccache_name, in krb5.conf)
• Fallback to /tmp/*krb5* for backward-compatibility and to have it similar to NFS behavior
• Enable looking for credential, on client-side, in Kernel keyring.

9

Improvement examples

• Lustre needs to map the Kerberos identity to a local identity. It was doing simply dropping the realm name if it was
matching the host realm name, but did not what to do if it was a different one.

• Historically, Lustre only supports a manual mapping with /etc/lustre/idmap.conf, which could be cumbersome to
maintain, especially if you user list is large

• Switch to standard mapping mechanism auth_to_local, in krb5.conf
• Support regexp patterns, file map, etc.

• Add an option to force a different realm than the default one from krb5.conf to help setup with using multiple
realms.

CLUSTERS.COM Kerberos Realm

Better support for cross-realm setup (LU-16630, LU-17023)

Enterprise Realm AD

john@ENTERPRISE.COM

john@CLUSTERS.COM

Active Directory

User

MDS

MGS

OSS

Client

10

Improvement examples

• Failover tuning with a failover group of 4 servers or more
• Kerberos mode introduces an additional connection retry in case of failover
• Double connections, plus trying each of the 4 servers successively in the worst case could be longer than recovery timeout
• Solution is to increase the minimum recovery window to 500 sec.

• Support standard Kerberos host principal (LU-16758)
• Now supports host/<hostname>@<REALM>, like SSH or NFS.

• Some limitations with supported cryptographic algorithms

• Multiple small bug fixes or improvements
• Client LBUGs (LU-16532, LU-12896)
• Logs verbosity (LU-16829)
• Module unloading (LU-16888)

And more...

11

Using FreeIPA

• As the integration efforts with AD can easily get more and more difficult, it is easy to end up building a complex
infrastructure, easiest is to move to FreeIPA

• FreeIPA is integrated solution for identity/access management.
• Kind of “Kerberos + LDAP + everything you need” in one place.
• It is targeting easy AD integration

• Working well… too well.

• Switching to FreeIPA infrastructure ended up having much larger Kerberos tickets, crashing Lustre! (LU-17015)
• AD is issuing tickets with PAC data (authorization data) which is making them much larger (few hundreds to several thousands

bytes).
• Lustre is relying on old SUNRPC implementation for key cache management (GSS).
• NFS had the same issue in the past and ended up switching to a totally new implementation (gssproxy).
• Lustre is reusing the already existing identity upcall cache instead, but this requires lots of adaption.
− Client is fixed
− Server patches are getting finalized

The large token challenge (LU-17015)

12

How is it performing?

• Single client I/O bandwidth
∙No impact for large streaming I/O

● Test environment
● Client

∙ 2x Xeon 8480C 56c
∙ 2 TB RAM
∙ 2x NDR 400 Gb/s

● Servers
∙ 12x DDN Exascaler AI400X2
∙ 24x MDTs
∙ 96x OSTs

Bandwidth

13

How is it performing?

• Single client Metadata performance

• Performance impact is limited
∙ -5% average impact
∙ Except -23% for directory stats

Metadata

14

Conclusion

• Kerberos is deployed on a large Lustre filesystem

• Supporting on a centralized Active Directory with Lustre

• Performance impact is minimal

• Interesting follow ups could be to enable Kerberos for all Lustre communications and test higher security levels

15

Thank you

• I’d like to thank

− Jonathan Calmels at NVIDIA for all the efforts he put into our Kerberos deployment.

− Whamcloud team members for the support and fast patch delivery: Sébastien Buisson, Andreas Dilger, Peter Jones

16

Questions?

