
Lustre and IO-500
Experiences with the Cambridge Data Accelerator

Matt Rásó-Barnett
University of Cambridge
LAD’19

Overview

➔ Obtained #1 position in June ISC’19 IO-500 Full-List with our all-flash Lustre-based burst-buffer

➔ This was our second submission on the same hardware; overall score improved nearly 4x over

November 2018 List

➔ This improvement came nearly entirely from software changes
◆ Used the very latest features Lustre has to offer

● LNET multirail

● DNE2 - 24x MDTs
● DoM
● OST Over-Striping

◆ Support and development effort from Whamcloud turbo-charged our effort, almost doubling our
previous best score of the time

◆ Tuning for benchmark

➔ Provides an interesting view on what’s possible with the latest Lustre releases

IO-500 Overview

Before:

After:

Headline ‘SCORE’ in the IO-500 is combination of individual metrics, primarily based on Bandwidth and

Metadata performance.

For our score, Metadata performance was the dominant contribution to improvement

IO-500 Overview

Talk at LUG’19: IO-500 – A Storage Benchmark for HPC – Andreas Dilger, Whamcloud

Made up of 5 Benchmark Scenarios

● Designed to provide balanced overall measurement
● Combination of ‘best’ and ‘worst’ case IO patterns

IOR ‘easy’ Write and Read Free to tune IOR parameters.
Typically file-per-process, large, aligned chunks

IOR ‘hard’ Write and Read Limited options. Forced to use small, unaligned IO to a single shared file

mdtest ‘easy’ Create, Stat, Delete Free to tune mdtest parameters.
Separate directory per process. Zero-size files.

mdtest ‘hard’ Create, Stat, Delete Limited options. Forces all process writing to single shared directory.
3901 byte files.

find Namespace search Find specific subset of files from those created in other 4 benchmarks.
-newer {timestamp} -size {mdtest_hard_size} -name *01*

http://cdn.opensfs.org/wp-content/uploads/2019/07/LUG2019-IO500_Storage_Benchmark_for_HPC-Dilger.pdf

IO-500 Overview

BW phase 1 ior_easy_write
IOPS phase 1 mdtest_easy_write
BW phase 2 ior_hard_write
IOPS phase 2 mdtest_hard_write
IOPS phase 3 find
BW phase 3 ior_easy_read
IOPS phase 4 mdtest_easy_stat
BW phase 4 ior_hard_read
IOPS phase 5 mdtest_hard_stat
IOPS phase 6 mdtest_easy_delete
IOPS phase 7 mdtest_hard_read
IOPS phase 8 mdtest_hard_delete

12 Test Phases overall

● 4 Bandwidth Phases (ior_easy_write, ior_easy_read…)
● 8 IOPS Phases (mdtest_easy_write, _stat, _delete, …)

Each phase has a result - either GB/s for bandwidth or kIOPs for metadata

All WRITE phases must run for 300s minimum to be valid submission

Geometric Mean of both

=

Total Score

IO-500 - How to get started - (Pt. 1)

$ git clone https://github.com/VI4IO/io-500-dev
$ cd io-500-dev

Load your cluster’s preferred MPI library
$ module load intelmpi...

Run compilation script
$./utilities/prepare.sh
…
OK: All required software packages are now prepared
io500_fixed.sh ior mdtest mmfind.sh pfind sfind.sh testlib

$ ls
bin build CHANGELOG.md doc io500.sh lib README.md site-configs utilities

The io500.sh script is what you will use to run the benchmark.
Simply run this in your batch job script

https://github.com/VI4IO/io-500-dev

IO-500 - How to get started - (Pt. 2)

function setup_directories {
 # set directories for where the benchmark files are created and where the results will go.
 io500_workdir=/lustre/scratch/io500 # directory where the data will be stored
 io500_result_dir=$PWD/results/$timestamp # the directory where the output results will be kept
 timestamp=`date +%Y.%m.%d-%H.%M.%S`

 io500_ior_easy=$io500_workdir/ior_easy
 io500_ior_hard=$io500_workdir/ior_hard
 io500_mdt_easy=$io500_workdir/mdt_easy
 io500_mdt_hard=$io500_workdir/mdt_hard

 mkdir -p $io500_workdir $io500_result_dir $io500_ior_easy $io500_ior_hard $io500_mdt_easy $io500_mdt_hard

 # set striping settings on directories here
 ...
}

function setup_paths {
 # Set the paths to the binaries. If you ran ./utilities/prepare.sh successfully, then binaries are in ./bin/
 io500_ior_cmd=$IO500_DIR/bin/ior
 io500_mdtest_cmd=$IO500_DIR/bin/mdtest
 io500_mdreal_cmd=$IO500_DIR/bin/md-real-io
 io500_mpirun="srun"
 io500_mpiargs="--mpi=pmi2 --cpu_bind=socket"
}

io500.sh script contains some simple functions that can be edited before running:

IO-500 - How to get started - (Pt. 3)

function setup_ior_easy {
 io500_ior_easy_size=160
 # 16M transfer size, 160GB per proc, file per proc, O_DIRECT
 io500_ior_easy_params="-a=POSIX --posix.odirect -C -t 16m -b ${io500_ior_easy_size}g -F"
}

function setup_mdt_easy {
 io500_mdtest_easy_params="-u -L" # unique dir per thread, files only at leaves
 io500_mdtest_easy_files_per_proc=540000
}

function setup_ior_hard {
 io500_ior_hard_writes_per_proc=90000
 io500_ior_hard_other_options="-a MPIIO" #e.g., -E to keep precreated files using lfs setstripe, or -a MPIIO
}

function setup_mdt_hard {
 io500_mdtest_hard_files_per_proc=32000
 io500_mdtest_hard_other_options=""
}

Tweaking these values is where you will used to spend most of your time!

Current io500.sh simplifies this, removing the need to set number of writes-per-process for example

Script also contains permitted parameters to tweak for each benchmark:

OUT OF DATE

IO-500 - General Tips

➔ Get Organised once you are up and running with benchmark
◆ Make a separate working directory and parameterize your io500.sh
◆ Think about how you will keep track of parameters used and results for that configuration

➔ Repeat configurations!
◆ Can be surprising the amount of variation in performance between identical runs
◆ Check server/client logs, fabric monitoring - might encounter issues to follow up

➔ Time
◆ Full run of the benchmark take over an hour
◆ Can use variables in io500.sh to evaluate each benchmark stage separately

eg:
Run ‘ior_easy’ phases only - probe what works/doesn’t in a quicker feedback loop.
Helps to find parameter values quickly.

‘Data
Accelerator’

Our all-flash Lustre
burst-buffer

Hardware Platform

❖ 24x Dell R740xd Servers

➢ 12x Intel SSD P4600 1.4TiB
NVMe per server

➢ 2x Intel Omnipath HFIs
@100Gbps per server

➢ 2x Intel Xeon Gold 6142 CPU
32C @2.60GHz

➢ 192GiB DDR4

How we use it - Lustre Filesystems-on-demand

Slurm Integration

https://github.com/RSE-Cambridge/data-acc

❖ Repo contains installation instructions, as well as quickstart demo environments deployable
with Docker or Openstack

❖ Core code written in Golang, along with Ansible to do Lustre filesystem creation/deletion

❖ Contributions/Feedback welcome!

https://github.com/RSE-Cambridge/data-acc

DAC in IO-500

❖ Filesystem-on-demand is perfect for benchmarking.
➢ Create/Destroy filesystem with each job, no user-contention, no degradation

❖ Allows agility in testing new Lustre versions - no persistency to worry about

❖ We chose not to utilise any RAID on top of the NVMe devices due to ephemeral nature of
any one Filesystem
➢ If a device is lost, just restart the job
➢ Optimising for performance over long-term resiliency

❖ All of this helps the system in this kind of benchmark achieve a peak-performance
➢ Not really representative of a typical persistent scratch filesystem

Filesystem Layout for IO-500

❖ Filesystem configuration used all NVMe’s

➢ 1x MDT per server = 24 MDTs
➢ 12x OSTs per server = 288 OSTs

❖ One device per-server partitioned to give
MDT and OST on same device.

➢ Each MDT was 100GiB in size
➢ Each OST approx 1.4TiB

❖ Overall filesystem:
~450TiB in size
~1Billion inodes - Important given number
of files created during mdtest_easy at peak
performance!

Benchmarking Process

❖ Worked with customised DAC ansible directly
➢ Manually overriding the Filesystem layout - the produced

Ansible inventory
➢ Added new plays to apply Server/Client ‘tunings’

 - name: Set client 16M RPCs

 command: "sudo lctl set_param osc.{{ fs_name

}}-OST*.max_pages_per_rpc=16M"

 register: client_max_pages_per_rpc_result

 retries: 3

 delay: 10

 until: client_max_pages_per_rpc_result.rc == 0

❖ Most of this is currently still outside the DAC upstream code-base
➢ Aiming to integrate most of this work in the upstream project

for November IO-500 runs
➢ Run benchmark on upstream DAC burst-buffer

➢ Can then match benchmark score to specific Ansible
inventory and DAC codebase version as part of a
reproducible configuration

Example of produced Ansible Inventory
dac-prod:
 children:
 fs1:
 hosts:
 dac-e-1.fabric.cluster :
 fs1_mdts:
 nvme7n1: 0
 fs1_mgs: sdb
 fs1_osts:
 nvme0n1: 0
 nvme10n1: 9
 nvme11n1: 11
 nvme1n1: 2
 nvme2n1: 4
 ...
 dac-e-10.fabric.cluster :
 ...

 vars:
 lustre_checksums : 0
 lustre_fs_name : fs1
 lustre_ldlm_lru_size : 4000000
 lustre_lnet_network : o2ib1
 lustre_max_dirty_mb : 512
 lustre_max_mod_rpcs_in_flight : 127
 lustre_max_read_ahead_mb : 2048
 lustre_max_read_ahead_per_file_mb : 256
 lustre_max_rpcs_in_flight : 128

Initial Experimentation - April 2019

❖ Began playing with IO-500 in April around LUG’19

❖ LOTS of early failures - trial and error - started out small-scale with few clients.

➢ Worked up gradually to larger numbers of clients (10, 32, 64, 128…)
■ Large parameter space to explore. Needed to find right set of io500.sh parameters to produce valid

runs at each stage

➢ Many problems along the way:
■ Remember to clean up failed runs - can easily fill filesystem with mdtest files
■ Bug in IO-500 pfind, not matching any files (Resolved in https://github.com/VI4IO/io-500-dev/issues/37)
■ Was not using a Slurm reservation of nodes originally, different compute nodes in each run

● Switched to reservation and team-members did node health-check on compute nodes with
HPL which identified some sub-par nodes - got good working set of nodes - important at high
client counts

■ Higher node-count jobs in-general was a learning curve - got help from other team-members about
configuring MPI library for our fabric

https://github.com/VI4IO/io-500-dev/issues/37

Initial Best Large-Scale Results

BW phase 1 ior_easy_write 208.252 GB/s
IOPS phase 1 mdtest_easy_write 53.451 kiops
BW phase 2 ior_hard_write 7.441 GB/s
IOPS phase 2 mdtest_hard_write 366.946 kiops
IOPS phase 3 find 729.390 kiops
BW phase 3 ior_easy_read 358.561 GB/s
IOPS phase 4 mdtest_easy_stat 247.400 kiops
BW phase 4 ior_hard_read 46.780 GB/s
IOPS phase 5 mdtest_hard_stat 2112.230 kiops
IOPS phase 6 mdtest_easy_delete 50.864 kiops
IOPS phase 7 mdtest_hard_read 1618.130 kiops
IOPS phase 8 mdtest_hard_delete 389.670 kiops

Nov 2018: [SCORE] Bandwidth 71.4032 GB/s : IOPS 352.754 kiops : TOTAL 158.707

May 2019: [SCORE] Bandwidth 120.47 GB/s : IOPS 1103.69 kiops : TOTAL 364.639

ior_easy_write 337.891 GB/s
mdtest_easy_write 1846.370 kiops
ior_hard_write 14.413 GB/s
mdtest_hard_write 558.397 kiops
find 1863.750 kiops
ior_easy_read 532.529 GB/s
mdtest_easy_stat 3138.370 kiops
ior_hard_read 81.216 GB/s
mdtest_hard_stat 1053.720 kiops
mdtest_easy_delete 1015.380 kiops
mdtest_hard_read 772.956 kiops
mdtest_hard_delete 441.478 kiops

November 2018
Servers: Lustre 2.11
528 Clients - 8ppn: Lustre 2.10.5

May 2019
Servers: Lustre 2.12.2
502 Clients - 16ppn: Lustre 2.10.7

Why the Improvement?

❖ Lots of improvements across the board
➢ More time dedicated to benchmarking. Some configuration mistakes made when rushing in November 2018
➢ Verified ‘known-good’ group of compute nodes → Lessons learned feeding back into general service
➢ Identified congested ISLs in Fabric → Reorganised DAC servers to reduce this

➢ Lustre 2.12.2 on servers
■ MANY performance improvements, particularly for Flash - See talks from LUG2019

(Lustre Optimizations and Improvements for Flash Storage – Shuichi Ihara, Whamcloud)

➢ 24x MDTs - Started using DNE at larger scale

DNE1 remote directories for mdtest_easy: lfs setdirstripe -c -1 $mdtest_easy_testdir
DNE2 striped directory for mdtest_hard: lfs setdirstripe -c -1 -D $io500_mdt_hard

➢ More client processes-per-node: 8ppn →16ppn

➢ POSIX O_DIRECT on ior_easy. MPIIO on ior_hard
Servers/Clients tuned to 16MiB RPCs.

■ Managed to get much closer to ‘peak’ ior_easy bandwidth

http://cdn.opensfs.org/wp-content/uploads/2019/07/LUG2019-Lustre_Optimizations_for_Flash-Ihara.pdf

Final Large-Scale Submission

BW phase 1 ior_easy_write 337.891 GB/s
IOPS phase 1 mdtest_easy_write 1846.370 kiops
BW phase 2 ior_hard_write 14.413 GB/s
IOPS phase 2 mdtest_hard_write 558.397 kiops
IOPS phase 3 find 1863.750 kiops
BW phase 3 ior_easy_read 532.529 GB/s
IOPS phase 4 mdtest_easy_stat 3138.370 kiops
BW phase 4 ior_hard_read 81.216 GB/s
IOPS phase 5 mdtest_hard_stat 1053.720 kiops
IOPS phase 6 mdtest_easy_delete 1015.380 kiops
IOPS phase 7 mdtest_hard_read 772.956 kiops
IOPS phase 8 mdtest_hard_delete 441.478 kiops

May 2019: [SCORE] Bandwidth 120.47 GB/s : IOPS 1103.69 kiops : TOTAL 364.639

June 2019: [SCORE] Bandwidth 162.049 GB/s : IOPS 2377.44 kiops : TOTAL 620.695

ior_easy_write 328.875 GB/s
mdtest_easy_write 1784.640 kiops
ior_hard_write 50.664 GB/s
mdtest_hard_write 558.621 kiops
find 1721.020 kiops
ior_easy_read 509.259 GB/s
mdtest_easy_stat 183233.000 kiops
ior_hard_read 81.267 GB/s
mdtest_hard_stat 5763.560 kiops
mdtest_easy_delete 1122.060 kiops
mdtest_hard_read 858.445 kiops
mdtest_hard_delete 584.785 kiops

May 2018
Servers: Lustre 2.12.2
502 Clients - 16ppn: Lustre 2.10.7

June 2019
Servers: Lustre ‘master’ branch + patches
512 Clients - 16ppn: Lustre ‘master’ branch + patches

Why the Improvement? (Pt.1)

❖ Engagement from Whamcloud post-LUG’19

➢ Discussion about developments going on at the time with specific performance improvements particularly
around metadata.

➢ Shared with me a number of patches that were landing at the time and tunings that they were testing with

➢ Working off ‘master’ branch - Upgraded all Servers **and Clients** to the current tip of ‘master’ at the time,
applied patches on top. Having 2.12+ clients opened up new features to utilise!

➢ ‘master’ branch also contained the new Lustre Overstriping feature presented at LUG2019
(Lustre Overstriping‐Improving Shared File Write Performance – Patrick Farrell, Whamcloud)

BW phase 2 ior_hard_write 14.413 GB/s
BW phase 4 ior_hard_read 81.216 GB/s

ior_hard_write 50.664 GB/s
ior_hard_read 81.267 GB/s

Use Lustre OST overstriping - 5x stripes per OST
lfs setstripe -C $((288*5)) -S 16M $io500_ior_hard

❖ Huge ~4x improvement in ior_hard_write performance

http://cdn.opensfs.org/wp-content/uploads/2019/07/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf

Why the Improvement? (Pt.2)

❖ Data-on-Metadata

➢ 2.12+ Clients enabled us to make use of DoM

➢ With all NVMe MDTs and OSTs possibly little benefit to create performance (mdtest_easy_write)

➢ However combination of DoM + specific patches [LU-12325] [LU-11623] + tunings shared by WC:

[MDS] $ lctl set_param mdt.*.dom_lock=trylock
 # Very Large number of client-side locks in LRU cache
 # Function of available server RAM - fortunately we have 24x 192GB MDS

[Clients] $ lctl set_param ldlm.namespaces.*.lru_size=4000000

Lead to **HUGE** ‘mdtest_stat_*’ improvements - particularly ‘mdtest_easy_stat’

IOPS phase 4 mdtest_easy_stat 3138.370 kiops
IOPS phase 5 mdtest_hard_stat 1053.720 kiops
IOPS phase 6 mdtest_easy_delete 1015.380 kiops
IOPS phase 7 mdtest_hard_read 772.956 kiops
IOPS phase 8 mdtest_hard_delete 441.478 kiops

mdtest_easy_stat 183233.000 kiops
mdtest_hard_stat 5763.560 kiops
mdtest_easy_delete 1122.060 kiops
mdtest_hard_read 858.445 kiops
mdtest_hard_delete 584.785 kiops

https://jira.whamcloud.com/browse/LU-12325
https://jira.whamcloud.com/browse/LU-11623

mdtest_easy_stat

❖ Score was suspiciously large. How is 183M stats per second even possible?

➢ Essentially for mdtest_easy with DoM, the patches and tunings applied, and the large client ‘lru_size’ - the
files the client has to stat is in cache locally on the node - no need to contact the MDT because it already
holds the lock.

➢ Possible because mdtest was not running in ‘strided’ mode - eg: perform ‘stat’ lookup of a file from different
client to the one that created it

➢ So this is measuring a cache effect

❖ This has been noted and fixed in the current IO-500 script

➢ mdtest now force the ‘-N 1’ flag to enforce strided behaviour on both ‘easy’ and ‘hard’ tests

➢ I haven’t re-run yet since these changes were introduced - but expecting big reductions in mdtest_stat_*
scores

ISC’19 Results

https://www.vi4io.org/io500/list/19-06/start

https://www.vi4io.org/io500/list/19-06/start

ISC’19 10-Node Challenge Results

https://www.vi4io.org/io500/list/19-06/10node

Same Benchmark suite, but everyone limited to 10 Client nodes - fairer comparison between configurations

We actually had 10 nodes with dual-OPA multi-rail for this, boosting our bandwidth score - Not normal on our cluster

https://www.vi4io.org/io500/list/19-06/10node

Overall Experience

❖ Lot of effort put in for just a benchmark, but useful learning experience for the team

➢ Not often that we are so focused around performance outside of new-system provisioning

➢ Was quite disruptive to our core cluster towards the end: re-imaging compute nodes to experimental Lustre
builds required moving large portion of cluster out of active-service for intense couple of days of
benchmarking

➢ However the work helped us implement a number of network, troubleshooting and monitoring
improvements that we are able to benefit from in future

➢ Looking to apply some of what we learned for improving our more traditional disk-based scratch-tier

➢ Provided interesting view into the latest features of Lustre. Things that we can learn from to guide
design/improve future persistent-tier. Not often get to experiment with these things.

➢ Fortunate to have a platform that provides ability to blow away and experiment with - ideal scenario for this
kind of competition

Future Plans

❖ Focused now on improving the DAC software for our
user-base

➢ Working with one of our bigger users, SKA Science
Data Processor team at Cambridge

➢ They have already been using the DAC to find
bottlenecks in their applications/workflows

➢ Read/Writing lots of HDF5 files - benefitting from
large bandwidth improvements over our current
scratch

❖ Working on upgrading cluster to new 2.12.X Lustre
baseline so can make use of latest features with the DAC in
production

❖ Will aim to keep submitting to IO-500 in future, and also
aim to start testing our traditional disk-based Lustre
filesystems as a way to monitor performance of the
filesystem over time

Future Plans - Probing DNE at larger scales?

❖ Have done some experiments looking at how ‘mdtest’ results scale with more MDTs

➢ Used 24 (1 per server) for IO-500 submission, but what happens if we add more per server?

Have done some quick benchmarks
with 2-per-server (48 MDTs) and saw
further scaling, particularly for
write/delete

Results shown here used our
‘production’ DAC configuration:

Servers: Lustre 2.12.2
Clients: Lustre 2.10.7

What about 3-per-server? (72 MDTs)

What about MDT on every device?
(288 MDTs + DoM)

Acknowledgements

❖ Special thanks to all the engineers at Whamcloud for the help and support given.
Particularly: Patrick Farrell, Shuichi Ihara, Amir Shehata, Peter Jones and
Andreas Dilger

❖ Thanks to all my colleagues at Cambridge for support with the hardware and
fabric

❖ And apologies to our users for the long queue times during the weekend around
8th June... 😀

Other Slides

Lustre version used

Base commit: 85db9b258c - New tag 2.12.54 (tag: v2_12_54)

Patches applied:

 647e37f LU-12043 llite: improve single-thread read performance - https://review.whamcloud.com/#/c/34095
 7dc9cfe LU-12043 llite,readahead: don't use max RPC size always - https://review.whamcloud.com/#/c/35033
 6967cf8 LU-11518 ldlm: control lru_size for extent lock - https://review.whamcloud.com/#/c/33371
 d6f2913 LU-12325 dom: use LCK_PR with 'trylock' mode - https://review.whamcloud.com/#/c/35031
 1f4f496 LU-11623 mdt: Opportunistically return UPDATE and PERM bits on open - https://review.whamcloud.com/#/c/33585

Commit reverted:

 ce37c38691 LU-10213 lnd: calculate qp max_send_wrs properly

Workaround for an OPA issue encountered during testing - Tracked under [LU-12385] - Now resolved for 2.13

This was from a particular point in time - with expert support - not a recommendation of something to
still use!

Recommended to start with latest feature-release, or ‘master’ if adventurous in testing

https://review.whamcloud.com/#/c/34095
https://review.whamcloud.com/#/c/35033
https://review.whamcloud.com/#/c/33371
https://review.whamcloud.com/35031
https://review.whamcloud.com/#/c/33585
https://jira.whamcloud.com/browse/LU-12385

