09/22/2014

### 

# Lustre Metadata Fundamental Benchmark and Performance

**DataDirect Networks Japan, Inc.** 

Shuichi Ihara

### Lustre Metadata Performance



- Lustre metadata is a crucial performance metric for many Lustre user
  - LU-56 SMP Scaling (Lustre-2.3)
  - DNE (Lustre-2.4)
- Metadata performance is related to small file performance on Lustre
- ► But, metadata performance is still a little mysterious ☺
  - Performance differentiation by metadata type and access patterns?
  - What is the impact of hardware resources for metadata performance?
- This presentation: use standard metadata benchmark tools to analyze metadata performance on Lustre today

### Lustre Metadata Benchmark Tools



### mds-survey

- Build into Lustre code
- Similar to obdfilter-suvey
- Generates loads on MDS to simulate Lustre metadata performance

### mdtest

- Major metadata benchmark tool used by many large HPC sites
- Runs on clients using MPI
- Several metadata operation and access patterns are supported

# Single Client Metadata Performance Limitation



Single client Metadata performance does not scale with threads.



LU-5319 supports multiple slots per client in last\_rcvd file (Under development by Intel and Bull).

### Modified mdtest for Lustre



### Basic Function

- Supports multiple mount points on a single client
- Helps generating heavy metadata load from single client
- Background
  - Originally developed by Liang Zhen for LU-56 work
  - We rebased and cleaned up codes and made few enhancements
- Enables metadata benchmarks on a small number of clients
  - Regression testing
  - MDS server sizing
  - Performance optimization

### **Performance Comparison**



Single Lustre client mounts /lustre\_0, /lustre\_1, .... /lustre\_31 for single filesystem

# mdtest –n 10000 –u –d /lustre\_{0-15}

60000

ops/sec

#### Single Client Metadata Performance (Unique, single mountpoint)

File creation File stat File removal



File creation File stat File removal



50000 40000 30000 20000 10000 0 1 2 4 8 16

Number of Threads

### **Benchmark Configuration**





### Metadata Benchmark Method



### Tested Metadata Operations

- Directory/File Creation
- Directory/File Stat
- Directory/File Removal

### Access patterns

- To Unique Directory and shared directory
  - o P0 -> /lustre/Dir0/file.0.0, P1 -> /lustre/Dir1/file.0.1 (Unique)
  - o P0 -> /lustre/Dir/file.0.0, P1 -> /lustre/Dir/file.1.0 (Shared)

### Stride pattern

 P0 creates files on /lustre/Dir0/file.0.0, P1 calls stat() to P0 created files and finally, P2 calls unlink() to them

# Lustre Metadata Performance Impact MDS's CPU speed



- Metadata Performance comparison (Unique Directory)
  - 32 clients(1024 mount points), 1024 processes, 1.28M Files
  - Tested on 16 CPU cores with 2.1, 2.5, 2.8, 3.3 and 3.6GHz CPU Speed (MDS)

#### **Directory Operation(Unique)**





# Lustre Metadata Performance Impact MDS's CPU speed



- Metadata Performance comparison (Shared Directory)
  - 32 clients(1024 mount points), 1024 processes, 1.28M Files
  - Tested on 16 CPU cores with 2.1, 2.5, 2.8, 3.3 and 3.6GHz CPU Speed (MDS)

#### **Directory Operation(Shared)**

Dir Creation Dir Stats Dir Removal



File Creation Fie Stats File Removal

File Operation(Shared)

©2014 DataDirect Networks. All Rights Reserved.

# Lustre Metadata Performance Impact MDS's CPU Cores



- Metadata Performance comparison (Unique Directory)
  - 32 clients(1024 mount points), 1024 processes, 1.28M Files
  - Tested on 3.3GHz CPU speed with 8, 12 and 16 CPU cores w/wo logical processors



#### File Operation(Unique)



# Lustre Metadata Performance Impact MDS's CPU Cores



- Metadata Performance comparison (Shared Directory)
  - 32 clients(1024 mount points), 1024 processes, 1.28M Files
  - Tested on 3.3GHz CPU speed with 8, 12 and 16 CPU cores w/wo logical processors



#### **Directory Operation(Shared)**

#### File Operation(Shared)

# Lustre Metadata Performance MDSs Scalability (Unique Directory)





# Lustre Metadata Performance MDSs Scalability (Shared Directory)





# Why Lustre directory creation is slower than File creation?





#### mdtest to ext4 w/wo inline\_data

- "Inline data" feature is available on newer kernel. RHEL7 also supports it.
- "Inline data" is not available in Idiskfs since "dir data" in Idiskfs and "inline data" are incompatible, today.
- Similar idea might be good? Investigating on LU-5603

default

inlie data





180000

160000

#### Small File Performance (Unique Directory) (32 clients, 1024 mount points)

File Creation
File Read

180000

160000

140000

ops/sec

#### Small File Performance (Shared Directory) (32 clients, 1024 mount points)

File Creation File Read File Removal

#### Creating files with actual file size (4K, 8K, 16K, 32K, 64K and 128K) (Stripe Count=1)

Lustre Metadata Performance File creation and removal for small files

File Removal



ddn.com

65536

131072

### Lustre Metadata Performance Stride access pattern



Stride ('-N' in mdtest) helps avoiding local locks in cache for stat() and unlink() operation after file creation.

File Removal with Stride



LU-5608 for regressions in 2.6 client for stride metadata access pattern.

### **Summary Observations**



- MDS Server resources significantly affect Lustre Metadata performance
  - Performance scales well by number of CPU core and CPU Speed in unique directory access, but not CPU bound for shared directory access pattern
  - Collected baseline results with 16 CPU cores, but need more tests on CPU cores
- Performance is highly dependent on metadata access pattern
  - Example: Directory Creation vs. File Creation
  - "Stride" option helps avoiding local locks in cache
  - With actual file size (instead of zero byte), less impact in the case of a small number of OST(e.g. up to 40 OST), but testing on large number of OSTs is needed

### Metadata Performance: Future Work



### Known Issues and Optimizations

- Client-side metadata optimization and especially single-client metadata performance
- Various performance regressions in Lustre 2.5/2.6 that need to be addressed (e.g. LU5608)
- Areas of Future Investigation
  - Real-world metadata use scenarios and metadata problems
  - Real-world small-file performance (e.g. life sciences)
  - Impact of OST data structures on real world metadata performance
  - DNE scalability on very large systems with many MDSs/MDTs and many OSSs/OSTs