
Patrick Farrell

LAD 2023: Buffered I/O, DIO & Unaligned DIO

whamcloud.com

Lustre Data I/O Path

►Data I/O Path: How data moves between program memory and storage

► “What does the file system do when you call read() or write()?”

►Data flows from userspace, into Lustre client, through the network, and to storage
(and back)

►POSIX gives two ways to do data I/O:

• Buffered I/O

• Direct I/O

►Each has benefits and drawbacks

whamcloud.com

Buffered I/O: Page cached I/O

►Buffered means ‘Uses the page cache’
• All user data is copied through the page cache

►What’s a page cache?
• An ordered set of pages in kernel memory which contain data from a file

• Shared between all processes using a file

• Tracked with a cousin of the classic binary tree

oAllows parallel lookups but serial insertions (adding new pages)

• Pages are created; inserted into cache; then data is copied to the page

o Copied from userspace for writes

o Copied from storage for reads

• Copying into the page cache aligns data; allows a 1-to-1 mapping for copies to/from storage

• Storage and RDMA requires aligned data for good performance

whamcloud.com

Buffered I/O

►Pros – Flexible:
• Allows any I/O – no memory alignment requirements for userspace

• Allows read ahead and write aggregation, converting small application I/O to large I/O on disk

• Async writes and readahead are perfect for hiding latency of slow devices (HDD)

• Repeat reads can be served from local cache

►Cons – Not scalable:

• Significant overhead for cache management

oLow single stream performance (max 1-3 GiB/s)

oMinimal multi-process scalability due to locking

whamcloud.com

Direct I/O

►Direct I/O means ‘Direct from user memory, does not use the page cache’

• Very simple and clean – no locking required

►Pros – Scalable:

• Very high single stream performance with large I/O – 18+ GiB/s

• Scalable as processes are added (for I/O to 1 file or to many files)

►Cons – Inflexible:

• Synchronous. I/O must go directly to disk, no async write or readahead

oExposes latency of slow devices

oCan't do readahead or write aggregation

oBad for small I/O

• Alignment requirement

oSize of I/O and location in memory must be a multiple of page size

oCan't be used without special effort from user program/libraries

whamcloud.com

Buffered vs Direct: Performance with I/O Size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Bandwidth vs I/O Size: Write

Buffered

Direct

Details on next slide

whamcloud.com

Buffered vs Direct: Small I/O Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4K 16K 64K 256K 1M

M
iB

/s

Bandwidth vs. I/O Size: Small Writes

Buffered

Direct

10 MiB/s

390 MiB/s

whamcloud.com

Buffered vs Direct: Summary

Buffered I/O Direct I/O

Small I/O Performance
✓ X

Large I/O Performance
X ✓

Many Processes
X ✓

High latency Storage (HDD)
✓ X

Unaligned I/O
✓ X

whamcloud.com

Buffered + Direct: Let’s have it all

►Strengths and weakness of buffered I/O and direct I/O pair up perfectly

►Use buffered I/O for small I/O and direct I/O for large I/O

• Userspace can do this, but requires application/library modification

►Can we dynamically select the IO type to use inside the file system?

►Ah, but alignment requirements…

• Can’t do arbitrary I/O as direct I/O, because I/O isn’t necessarily memory or size aligned.

►Must be aligned for good performance with RDMA and read/write from/to storage

• Unaligned RDMA and disk I/O can be done, but at significant cost

►Buffered I/O is aligned by copying into the page cache

►Direct I/O must be aligned in userspace by application

whamcloud.com

User Memory & the Page Cache

whamcloud.com

Aligned User Memory & Direct I/O

whamcloud.com

Getting Alignment: Caches vs Buffers

►Page cache gives you alignment, but is very expensive

►Copies unaligned data in to aligned pages

►A cache can be used repeatedly & accessed from multiple threads

• Requires lots of concurrency management and locking

• Most cost of cache is not in data copying – cost is in cache setup

►But copying to aligned pages is what gets you alignment – no need for a cache

whamcloud.com

Unaligned DIO: Buffer, no cache

►To get alignment:

• Allocate an aligned buffer

• Copy data to/from the buffer

• Do direct I/O from the buffer

► I/O is still synchronous – when write() returns, I/O is complete

►Buffer isn't accessible from other threads

►No need for cache setup or locking

whamcloud.com

Reference: Page Cache Locking

whamcloud.com

Unaligned DIO: Buffers, but no cache

whamcloud.com

Caveat on Numbers

►Hardware is different than previous graphs

• This hardware's limit is ~10 GiB/s for single threaded DIO

• Not 18 GiB/s limit on previous hardware

►This is v1, various optimizations can be made in the future

whamcloud.com

Unaligned DIO: Write Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Write Size

Bandwidth vs. I/O Size (Write)

Buffered

Aligned DIO

Unaligned DIO

3.2 GiB/s

8.2 GiB/s

1.0 GiB/s

whamcloud.com

Unaligned Direct I/O: Performance

►3.2 GiB/s single threaded write is nice, but just 40% of aligned DIO (8 GiB/s here)

►Well, data copy and memory allocation are pretty time consuming

►But, yes, we can do better

► memcpy() for buffered I/O is single threaded

• It’s not any faster to parallelize

• Locking and coordination of cache bottlenecks

►But DIO is different. No locking, so we can parallelize

whamcloud.com

Unaligned DIO: Read Performance

0

2000

4000

6000

8000

10000

12000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Read Size

Bandwidth vs. I/O Size (Read)

Buffered

Aligned DIO

Unaligned DIO

10.5 GiB/s

8 GiB/s

2.0 GiB/s

whamcloud.com

Unaligned Direct I/O: Performance

►Unaligned DIO read is at 8 GiB/s of 10.5 GiB/s for DIO (76%)

►Copy for unaligned DIO read is parallelized

• Farms out data copy for each DIO to many daemon threads

►Data copy for write will be parallelized but is trickier. Will not be in initial version.

►Read & write will have both allocation and copy parallelized

• Expect ~75% of DIO performance initially

►Will scale with DIO performance

• 18 GiB/s DIO implies ~13 GiB/s unaligned DIO

whamcloud.com

Unaligned Direct I/O & Hybrid I/O: The Plan

►Finish unaligned direct I/O

►Test and optimize

►Once that's done:

►Started work on hybrid I/O path

• Userspace does simple read() or write() calls

• Lustre decides internally to do buffered I/O, or unaligned DIO (or aligned DIO if possible)

►Gets the best of both worlds

• Readahead and write aggregation at small sizes

• High efficiency at large sizes

whamcloud.com

Hybrid I/O: Where We’re Headed

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4K 16K 64K 256K 1M 4M 16M 64M 256M

M
iB

/s

Write Size

Notional Bandwidth vs. I/O Size (Write)

Buffered

Aligned DIO

Hybrid IO 13.4 GiB/s

16.7 GiB/s

1.0 GiB/s

whamcloud.com

Unaligned Direct I/O and direct I/O: Future work

►Unaligned direct I/O: Lustre 2.16 (Merged)

• Will allow direct I/O which is not a multiple of page size

• Still strictly opt-in, does nothing if you’re not using O_DIRECT

►Hybrid I/O: 2.16 and 2.16+

• Simplest version should follow quickly after unaligned DIO

• Aiming for gradual phase in

• Use in increasingly more situations as we are sure it improves performance there

►Further DIO efficiency improvements

• Referenced in LUG 2022 presentation Unaligned DIO & I/O Path Futures

• DIO path is 18 GiB/s today, ~50+ GiB/s in future (LU-16640, LU-13814)

• Will correspondingly boost hybrid I/O path performance (20-30 GiB/s)

https://wiki.lustre.org/images/a/a3/LUG2022-Future_IO_Path-Farrell.pdf
https://jira.whamcloud.com/browse/LU-16640
https://jira.whamcloud.com/browse/LU-13814

whamcloud.com

Thank you

►Thank you for listening

►See LU-13805 for further details

►See my LUG 2022 presentation for more on DIO improvements

►Questions to pfarrell@whamcloud.com

►Thanks to Nathan Rutman for a useful question in 2020

https://jira.whamcloud.com/browse/LU-13805
https://wiki.lustre.org/images/a/a3/LUG2022-Future_IO_Path-Farrell.pdf
mailto:pfarrell@whamcloud.com

Thank You!

