

Lustre File System on ARM

Architecture Evaluation v1.1

September 2017

Carlos Thomaz

Motivations

ARM momentum

- 64bit evolution
- Recent debuts on HPC
- Traction in new areas such as Machine Learning and AI

Another option in the market

- Intel established as de-facto standard
- Market needs competitors; cost reduction

Technical reasons

- Potential high bandwidth, high throughput processor
- Low power consumption option
- The Technical challenge

The Cavium ThunderX Architecture

SoC architecture

ISA: ARMV8

root@s167:/proc# lscpu	
Architecture:	aarch64
Byte Order:	Little
	Endian
CPU(s):	96
On-line CPU(s) list:	0-95
Thread(s) per core:	1
Core(s) per socket:	48
Socket(s):	2
NUMA node(s):	2
L1d cache:	32K
Lli cache:	78KL2
cache: 163	384K
NUMA node0 CPU(s):	0-47
NUMA nodel CPU(s):	48-95

ARM

⊘o	CAVIUM		Security Of Engine	fload	De	ep Packet nspection	vSwitch 0 Engin)ffload ie	Da	ita Analytics Engine				
			Nitrox III ba	Nitrox III based		AID engine	Compression Engine		Packet Processing Engine					
	3 x8 PCle Gen3										i			
Up to 24 Janos	OR 1 x16 PCIe (Sen3	CORE	CO	RE	CORE	CORE	COF	RE	CORE	£			
Op to 24 lanes	1 x8 PCle C	Ben3	CORE	С	RE	CORE	CORE	COF	RE	CORE	Б.			
	OR 6 x4 PCle 0	en3	CORE	СО	RE	CORE	CORE	COF	RE	CORE	U U			
	8x10GbE		CORE	co	RE	CORE	CORE	CO	RE	CORE	une			
	OR 2x 40GbE	OR 2x 40GbE	OR 2x 40GbE	Ethernet	CORE	С	RE	CORE	CORE	CO	RE	CORE	erco	
Up to 8 ports	OR 1x100GbE	Fabric	CORE	С	RE	CORE	CORE	CO	RE	CORE	ţ	<u> </u>		
	(external gearbox)	(external gearbox)		CORE	co	RE	CORE	CORE	CO	RE	CORE	erer		
		_	CORE	co	RE	CORE	CORE	CO	RE	CORE	Ъ			
Up to 16 ports	Up to 16 SATA 3.0 6G		16 MB Shared L2 Cache							Cache				
	Mine 10		·								,			
	USB, GPIO,	12C	4 x DDR3/DDR4 Memory Controllers							Interc	onnect			
	Up to 32 la Integrated	ines d IO	D D R	Ļ		D D R	D D R		D D R					

ARM ThunderX and Intel Xeon

Cache and Memory Hierarchy

ARM Ecosystem

Courtesy of ARM – http://arm.com/hpc

6 DDN Goals evaluating ARM

- Understand if it is a viable option for mid/long term future products
- Understand what's the effort necessary to make Lustre running optimally on ARM (client and server-side)
- Understand how Lustre and general I/O behaves on ARM SoC architecture
- Contribute to the community

Test Environment used for the study

7

Test environment

4 x Gigabyte, Cavium ThunderX2 ARM servers

• 128GB RAM, 3 x 40GbE | 4 x 10GbE, 1 x IB FDR 56Gbps

1 x SFA7700-IB (ib-srp)

• Full flash array, 8 x RAID6 LUNs (200GB SSDs)

1 x ES7KE-IB (Intel based, DDN appliance)

 Embedded Lustre appliance, 2 controllers, 8 RAID6 pools (OSTs), 2 SSD RAID1 pools for MDT

3 x DELL R620 servers

• 2 sockets, 12 cores total, 64GB RAM

Lustre File System configuration

ARM Servers and Clients

- OS: Ubuntu 16.04.03 LTS Xenial Xerus
- Kernel: Linux *s166* 4.4.0-31-generic #50-Ubuntu SMP Wed Jul 13 00:06:30 UTC 2016 aarch64 aarch64 aarch64 GNU/Linux
- Lustre: 2.10.0.0 + patches
 - o LU-9950, LU-9951, LU-9564 (backported for Ubuntu/debian)

X86 clients

- OS: CentOS Linux release 7.2.1511 (Core)
- Kernel: Linux s162 3.10.0-327.el7.x86_64 #1 SMP Thu Nov 19 22:10:57 UTC 2015 x86 64 x86 64 x86 64 GNU/Linux
- Lustre: 2.10.0.0

ES7K Embedded Lustre Server

- OS: CentOS Linux release 7.3.1611 (Core)
- Kernel: Linux vm01-es7k01 3.10.0-514.21.2.el7.x86_64.lustre #1 SMP Wed Jun 21 03:34:21 PDT 2017 x86_64 x86_64 x86_64 GNU/Linux
- Lustre: DDN Lustre 2.7.x + Patches

Stand alone ARM servers

Baseline Performance

Single ARM Server – first glimpse Memory Bandwidth (stream)

4000

Memory bandwidth - Absolute

Memory bandwidth -Normalized (per core) results

ARM# gcc-6 -O3 -march=ARMv8.1-a -fopenmp -mcmodel=large \ -DSTREAM_ARRAY_SIZE=2600000000 -Wall stream.c -o stream_h DELL# gcc -Ofast -fopenmp stream.c -Wall -m64 -mcmodel=medium -DSTREAM_ARRAY_SIZE=1100000000 -o stream_h

IB RDMA Network test with IB_SEND_RW Sanity tests

* * * * *	* * * * * * * *	*******	* * * * * * * * * *	* * * * *	
*.Wai	iting fo	r client t	o connect	*	
****	******	* * * * * * * * * *	* * * * * * * * * *	* * * * *	

	Sella PIAII	eccional bw les	L	
Dual-port	OFF	Device		mlx4_0
Number of qps		Transport type		IB
Connection type	UC	Using SRQ		OFF
TX depth	128			
RX depth	1000			
CQ Moderation	100			
Mtu	2048[B]			
Max inline data	0[B]			
rdma_cm QPs	OFF			

local address: LID 0x25 QPN 0x0255 PSN 0xfe41b5 remote address: LID 0x26 QPN 0x47d1 PSN 0x8db89f

#bytes 2 1000 1000 1000	#iterations B 1000 16.95 33.17 66.34	W peak[MB/sec] 9.01 16.42 32.75 65.39	BW average[MB/sec] 7.98 4.303677 4.292886 4.285470	MsgRate[Mpps] 4.185542
32	1000	132.68	130.73	4.283882
64	1000	265.36	262.16	4.295241
<snip></snip>				
131072 262144 524288 1048576 2097152 4194304 8388608	1000 1000 1000 1000 1000 1000	8250.48 8263.43 8252.15 8256.10 8254.87 8256.12 8136 98	8244.47 8256.41 8246.37 8248.31 8251.13 8251.63 8138 19	0.065956 0.033026 0.016493 0.008248 0.004126 0.002063 0.001017

ARM Server – point to point IB BW MPI OSU BW and BIBW

Unidirectional BW

Bidirectional BW

root@s165:/mnt/lustre# mpirun_rsh -hostfile /mnt/lustre/bin/mach -n 2 /mnt/lustre/mvapich/bin/osu_bw # OSU MPI Bandwidth Test v5.3.2	<pre>root@s165:/mnt/lustre# mpirun_rsh -hostfile /mnt/lustre/bin/mach -n 2 /mnt/lustre/mvapich/bin/osu_bibw # OSU MPI Bi-Directional Bandwidth Test v5.3.2</pre>				
# Size Bandwidth (MB/s)	# Size Bandwidth (MB/s)				
1 0.22	1 0.28				
2 0.84	2 1.25				
4 2.14	4 2.51				
8 4.28	8 4.97				
16 8.56	16 4.02				
32 17.05	19.13				
64 33.76	38.35				
128 65.66	8 72.64				
256 115.18	142.76				
512 245.05	269.86				
399.22	519.32				
2048 735.48	872.59				
4096 1090.75	1261.87				
8192 1235.69	8192 1449.39				
16384 2838.55	16384 2608.61				
32768 4864.02	32768 4686.06				
65536 4688.12	65536 7477.37				
131072 5270.83	131072 8310.94				
262144 5333.59	262144 8436.23				
524288 5297.62	524288 8539.24				
1048576 5387.66	1048576 8597.96				

Single ARM server – storage backend

Simple test to evaluate storage backend – FIO

• 1 x ARM server connected to SFA7700X via IB-SRP (FDR)

```
root@s165:/sys/block# fio --name=foo --rw=read --bs=1m --runtime=30 --time based --ioengine=libaio --iodepth=64 --direct=1 --numjobs=8 --
group reporting
foo: (g=0): rw=read, bs=(R) 1024KiB-1024KiB, (W) 1024KiB-1024KiB, (T) 1024KiB-1024KiB, ioengine=libaio, iodepth=64
fio-3.0
Starting 8 processes
Jobs: 8 (f=16): [R(8)][100.0%][r=5260MiB/s,w=0KiB/s][r=5260,w=0 IOPS][eta 00m:00s]
foo: (groupid=0, jobs=8): err= 0: pid=37191: Tue Sep 26 18:51:52 2017
  read: IOPS=5426, BW=5427MiB/s (5690MB/s)(159GiB/30074msec)
  slat (usec): min=191, max=101843, avg=1202.10, stdev=5434.79
  clat (usec): min=342, max=562238, avg=92961.48, stdev=54905.53
   lat (usec): min=807, max=562616, avg=94164.77, stdev=55509.54
  clat percentiles (msec):
                  7], 5.00th=[ 17], 10.00th=[
                                                   31], 20.00th=[
    | 1.00th=[
   | 30.00th=[ 63], 40.00th=[ 75], 50.00th=[
                                                 86], 60.00th=[
   | 70.00th=[ 112], 80.00th=[ 136], 90.00th=[ 165], 95.00th=[ 190],
   | 99.00th=[ 251], 99.50th=[ 284], 99.90th=[ 510], 99.95th=[
                                                                   5271,
   | 99.99th=[ 550]
 bw ( KiB/s): min=153600, max=983040, per=12.50%, avg=694524.80, stdev=105260.97, samples=480
             : min= 150, max= 960, avg=678.12, stdev=102.78, samples=480
 lat (usec) : 500=0.01%, 750=0.01%, 1000=0.01%
 lat (msec) : 2=0.06%, 4=0.31%, 10=1.87%, 20=3.92%, 50=15.35%
 lat (msec) : 100=41.89%, 250=35.57%, 500=0.90%, 750=0.11%
             : usr=0.34%, sys=31.73%, ctx=19114, majf=0, minf=21757
Run status group 0 (all jobs):
                     (5690MB/s), 5427MiB/s-5427MiB/s (5690MB/s-5690MB/s), io=159GiB (171GB), run=30074-30074msec
```

Disk stats (read/write): sdb: ios=55827/0, merge=55472/0, ticks=2579464/0, in_queue=2582500, util=94.10% sdc: ios=53850/0, merge=57636/0, ticks=2780888/0, in_queue=2793204, util=95.68%

Part 1 – ARM Server

IOR Single Client Performance – Multiple Threads

IOR Single Client Performance – Multiple Threads

IOR Single Client Performance - 4MB RPCs - REGULAR vs FAKE IO /mnt/arm/bin/ior.arm.mvapich -a POSIX -b 1g -r -w -F -B -t 4m -o /mnt/arm/file.out

© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

IOR Results – end to end multiple clients (Real I/O)

X86 clients against Lustre ARM server IOR Sequential Performance

Multiple Client IOR Performance - x86 Clients against ARM Server /mnt/arm/bin/ior.x86.mvapich -a POSIX -b 1g -r -w -F -B -t 16m -o /mnt/arm/file.out

19

ARM and x86 Clients comparison IOR, multiple clients - Sequential

ARM and x86 Clients - IOR Sequential Reads / Writes (ARM Server)

Sniplet from brw_stats during a set of runs (2 to 128 threads)

Ltest-OST(<snip></snip>	0000									
read		write								
disk I/O s	size		ios	° Cĭ	um %	ic	DS	% Cur	n 8	
4K:					127	0	0	1	0	0
8K:					146	0	1	0	0	0
16K:					403	2	4	0	0	0
32K:					681	4	8	0	0	0
64K:					1590	10	19	0	0	0
128K:					1565	10	29	0	0	0
256K:					631	4	33	0	0	0
512K:					89	0	34	0	0	0
1M:					9905	65	100	169184	99	100

Ltest-OST0001 <snip></snip>							V	er
read	write							
disk I/O size		ios	% cum %	i	os	8 Cui	n 8	
4K:			44	0	0	1	0	0
8K:			44	0	0	0	0	0
16K:			119	0	1	0	0	0
32K:			245	1	3	0	0	0
64K:			461	3	7	0	0	0
128K:			452	3	10	0	0	0
256K:			148	1	12	0	0	0
512K:			30	0	12	0	0	0
1M:			10940	87	100	168096	99	100

Very much the same for all other OSTs Itest-OST000[0-6]

Part II – ARM Clients

23 Single Client Performance comparison

Multiple Client performance comparison

© 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. Any statements or representations around future events are subject to change.

Preliminary Conclusions

26 ARM Server - RAW vs Lustre

RAW performance indicates the ARM systems could potentially sustain high bandwidth

- We achieved about 7GB/sec reading/writing into and from a Flash based storage that is capable of doing 10GB/sec I/O.
- The bottleneck is the IB-FDR used with IB-SRP as connection
- Concurrent Infiniband traffic also performs well. Tests executed demonstrated about 6GB/sec unidirectional BW and about 9GB/sec bi-directional on both IB_RDMA calls (*ib_send_bw*) and also on MPI layer.
- Memory bandwith per core is much lower than other x86 architecture that probably will affect Lustre IO too.

"Noise" - Unpredictability on the Server side

- We observed noise and unpredictable server behavior when scaling up the IO workload thus increasing the number of OSS service threads.
 - Such behavior is related to the highly scalable number of cores on two NUMA domains.
 - Changing LNET partitions plays a little but yet visible effect on server performance.
 - Lustre PIO _should_ help since the effects we are seeing on ARM servers are similar to KNL nodes (high core count, low frequency) – Avoiding serialization should help.
- The best numbers are observed when using 24 to 32 cores
 - More than 32 cores causes noisy and the results become unpredictable. This effect is known, specially on high count core SoC architecture.
 - No L3 cache line and all coherent helps to minimize the effect
 - 4 LNET partitions seems to be optimal for the tested CPU

28 Server Performance

Reads seems reasonable, writes needs improvement

- Lustre back-end write performance is limited to 3-3.5GB/sec
 - It's about 50% of RAW I/O performance
 - Client concurrency slow down to 2-2.5GB/sec
 - Increasing the default number of OSS service threads didn't take much effect (default 360).
- Lustre back-end read performance seems to be max out to 5-5.5GB/sec
 - Compared to other Lustre back-end, Read performance seems good.
 - Ext4 can provide maximum of 6-6.5GB/sec (for this test environment).

29 Minimizing NUMA effects

Change LNET partition table

- Initially set to 8 partitions, brought the inflexion point lower
- 4 partitions was the setting that provides better and more reliable performance

root@s165:~# cat /proc/sys/lnet/cpu_partition_table
0 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 : 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
2 : 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
3 : 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

root@s165:~# cat /etc/modprobe.d/lustre.conf
options lnet networks=o2ib(ib0)options
libcfs cpu_npartitions=4options
libcfs cpu pattern=""

30 ARM Lustre Clients

- Overall Performance equivalent to OLD Xeons, but likely to be half of the current ones.
 - 24 core ARM matches the 12 core Haswells (reads and writes)
 - Ability to write faster on an optimized DDN ES7K also helps to blame ARM server for lower numbers
- Similar type of NUMA issues found on client, but harder to understand and tune.
 - Benefits of LNET partitions and other NUMA tuning still not clear
 - Applications can probably have better behavior using numactl

Lustre

Build procedure required three patches

- LU-9950 and LU-9951
 - Build process, not really a Lustre code change
 - Patches on JIRA
- LU-9564 backported (in order to build server on Ubuntu/debian)
- Not very complicate, but require some cleanup in the process (built on Ubuntu - caused some library incompatibilities)
- The process overall is easy and straight forward

What next?

Study still in very preliminary stage

More research on the server side

- We are interesting on alternatives for the current offerings
- Evaluate SoC features for better utilization (crypto, RAID engine, virtualization)
- Profile IO and general workloads

Need to test 40GbE

 Native chips and embedded Switch on SoC is supposedly to deliver better I/O balance (opposed to utilization of single IB card)

Experiment in larger scale

- Looking for large environments willing to cooperate
- Lustre side
 - P0: Run tests with PIO and compare results
 - Profile writes

Thank you

Carlos Thomaz Thanks for the help from Frank Leers, Gu Zheng and rest of the team.

Extra slides

35 Building Lustre

Submitted patches in JIRA

- <u>https://review.whamcloud.com/#/c/27323/</u>
- https://jira.hpdd.intel.com/browse/LU-9950
- https://jira.hpdd.intel.com/browse/LU-9951

Prepare kernel source

root@s164:~ git clone http://kernel.ubuntu.com/git-repos/ubuntu/ubuntu-xenial.git/ ubuntu-kernel root@s164:~/ubuntu-kernel# uname -r 4.4.0-93-generic root@s164:~/ubuntu-kernel# git tag | grep 4.4.0-93 Ubuntu-4.4.0-93.116 root@s164:~/ubuntu-kernel# git checkout Ubuntu-4.4.0-93.116

Configure Kernel source

root@s164:~/ubuntu-kernel# touch .scmversion root@s164:~/ubuntu-kernel# cp /boot/config-`uname -r` .config root@s164:~/ubuntu-kernel# cp /usr/src/linux-headers-`uname -r`/Module.symvers

Patch Makefile

root@s164:~/ubuntu-kernel# git diff diff --git a/Makefile b/Makefile index f1fee0c..5f235dc 100644 --- a/Makefile #+++ b/Makefile @@ -1,7 +1,8 @@ VERSION = 4 PATCHLEVEL = 4 -SUBLEVEL = 79 -EXTRAVERSION = +SUBLEVEL = 0 +EXTRAVERSION = -93-generic + NAME = Blurry Fish Butt

DOCUMENTATION
root@s164:~/ubuntu-kernel# make modules_prepare

Patch Lustre

• LU-9950, LU-9951, *review.whamcloud.com/*#/*c*/27323/

Build Lustre

bash autogen.sh && ./configure --enable-server --enable-ldiskfs --with-zfs=no --with-o2ib=/usr/src/ofa_kernel/default/ \
--with-linux=/root/ubuntu-kernel/ --enable-module && make debs

Build and replace e2fsprogs

git clone git://git.hpdd.intel.com/tools/e2fsprogs.git cd e2fsprogs git checkout v1.42.13.wc6 -b v1.42.13.wc6 wget -P ../ http://archive.ubuntu.com/ubuntu/pool/main/e/e2fsprogs/e2fsprogs_1.42.13-1ubuntu1.debian.tar.xz tar --exclude "debian/changelog" -xf ../e2fsprogs_1.42.13-1ubuntu1.debian.tar.xz sed -i 's/ext2_types-wrapper.h\$//g' lib/ext2fs/Makefile.in dpkg-buildpackage -b -us -uc

 $dpkg \ \ i \ libcomerr2_1.42.13 \ -1_arm64.deb \ libss2_1.42.13 \ -1_arm64.deb \ e2fsck-static_1.42.13 \ -1_arm64.deb \ e2fslibs_1.42.13 \ -1_arm64.deb \ e2fsprogs_1.42.13 \ -1_arm64.deb \$

