£ Paris, France 23.09. - 25.09.19

LUSTRE AMINS & DEVS WORKSHOP

Upcoming Release Feature Highlights)

2/

Whamcloud

P 2.13 feature complete, ETA November, 2019

* Persistent Client Cache (PCC) — store file data in client-local N\VMe/NVRAM
LNet Multi-Rail Routing — extend MR to/through routers, handle mixed interfaces

DNE space balanced remote directory — improve load/space balance across MDTs

Layout OST overstriping — allow multiple objects from one OST in a striped file

Self-Extending Layouts (SEL) — better handle OST out-of-space in the middle of a file
» 2.14 has a number of features under active development

* DNE directory auto-split — improve usability and performance with multiple MDTs
* File Level Redundancy Erasure Coding (EC) — efficiently store striped file redundancy
* OST Pool Quotas — manage space on tiered storage targets using OST pools
P 2.15 plans continued functional and performance improvements

* Metadata Writeback Cache (WBC) — low latency file operations in client RAM
* Client-side data encryption — persistent encryption from client to disk

2 whamcloud.com

Persistent Client Cache (PCC, LU-10092) (2.13))

2/

Whamcloud

» Reduce latency, improve small/unaligned IOPS, reduce network traffic

» PCC integrates Lustre with a persistent per-client local cache storage
* A local filesystem (e.g. ext4 or 1diskfs) is created on client device (SSD/NVMe/NVRAM)
* Data is local to client, no global/visible namespace is provided by PCC
* HSM POSIX copytool fetches whole files into PCC by user command, job script, or policy
* New files created in PCC are also created on Lustre MDS

. PCC Switcher / llite PCC Switcher
» Lustre uses local data if in PCC, or normal OST RPCs Cache 10

* Further file read/write access “directly” to cache file
* No data/IOPS/attributes off client while file in PCC
2.13 * File migrated out of PCC via HSM upon remote access

Cache IO

2.14 P> Separate shared read vs. exclusive write cache
» Integrate with DAX for NVRAM cache device

whamcloud.com

https://jira.whamcloud.com/browse/LU-10092

DNE Improvements (2.134))

2/

Whamcloud

» Space balance new directories on "best" MDT based on available inodes/space
* Simplifies multiple MDTs without overhead of striping all directories, similar to OST balance
2.12 * Explicitly when creating a new directory with "1fs mkdir -i -1"(LU-10277)
* Transparently with normal mkdir () based on parent policy (LU-10784, LU-11213)
- Set "space" hash policy on parent via "1fs setdirstripe -H space dir"

o Most useful for root directory and top-level user directories
2.13 P Improved DNE file create performance for clients (LU-11999, Uber)
2.14 p Automatic directory restriping as directory size grows (LU-11025)

* Create one-stripe directory for low overhead, scale shards/capacity/performance with size
* Add extra directory shards when master directory grows large enough (e.g. 10k entries)
* Move existing dirents to new directory shards

Master +4 dir shards

. . +12 directory shards
* New dirents and inodes created on new MDTs -

4 whamcloud.com

https://jira.whamcloud.com/browse/LU-10277
https://jira.whamcloud.com/browse/LU-10784
https://jira.whamcloud.com/browse/LU-11213
https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-11025

2.13

Data-on-MDT Improvements (2.134) S}

/

Whamcloud

» Convert write locks to read locks w/o cache flush (LU-10175)
» General usability and stability improvements
» FLR mirror/migrate DoM file (LU-11421)

* Mirror DoM data to OST object OST Object j (PRIMARY, PREFERRED)

* Migrate DoM data to/from OST object :

* No MDT-MDT mirroring yet OST Object k (STALE) : delayed resync
» Performance and functional improvements
* Target 10-500 mdtest-hard-{write, read} (3901-byte parallel file create in shared dir)

2.14

» Dynamic DoM component size by MDT free space (LU-12785)
» Merge data write with MDS_CLOSE RPC (LU-11428)

» Cross-file data prefetch via statahead (LU-10280)

» Allow MDT-only filesystem (LU-10995)

whamcloud.com

https://jira.whamcloud.com/browse/LU-10175
https://jira.whamcloud.com/browse/LU-11421
https://jira.whamcloud.com/browse/LU-12785
https://jira.whamcloud.com/browse/LU-11428
https://jira.whamcloud.com/browse/LU-10280
https://jira.whamcloud.com/browse/LU-10995

LNet Multi-Rail Selection Policy (2.13+) !

2/

Whamcloud

» Multi-Rail routing (LU-11299) Clients A Clients B
* Extend LNet Multi-Rail to router nodes - z

Multi-rail

2.13 +|mprove handling of mixed MR/single networks S0

2.14 P User Defined Selection Policy (LU-9121) Bow)
* Fine grained control of interface selection / N
o TCP vs. IB networks, primary vs. backup Q’b b;@
* Optimize RAM/CPU/PCI data transfers
MDS/OSS

* Useful for large NUMA machines

6 whamcloud.com

https://jira.whamcloud.com/browse/LU-11299
https://jira.whamcloud.com/browse/LU-9121

Improved Client Efficiency (2.134))

2/

Whamcloud

» Single thread create performance on DNE (LU-11999 Uber)
* Reduce locking overhead/latency for single-threaded workloads (780/sec -> 2044 /sec)
» Parallel client readahead performance (LU-8709, LU-12043)
* Optimize single-threaded readahead using multiple async prefetch threads
* Improved read for "dd if=file of=/dev/null bs=1M" from 1.9GB/s -> 4.0GB/s
» Overstriping OST objects better utilizes large/fast OSTs from fewer clients (LU-9846)
*"1fs setstripe -C|--overstripe-count stripe count" for multiple objects per OST
» Improved small file handling (10-500 mdtest-hard-{write,read} performance)
* Cache small files after create (LU-11623, LU-12325, LU-10948, ...)
» Improved strided read/write (10-500 ior-hard-{write, read} performance)
2.13 * Detect and handle page-unaligned strided reads (LU-12644)
2.14 * Kernel 1lockahead for strided writes (LU-12550)
* Allow readahead to continue for slightly "imprecise" strides
» Local client mount on OST/MDT for data mover/resync (LU-10191)
* Beginning of optimization for local 10 path to avoid RPC + data copy

7 whamcloud.com

https://jira.whamcloud.com/browse/LU-11999
https://jira.whamcloud.com/browse/LU-8709
https://jira.whamcloud.com/browse/LU-12043
https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-11623
https://jira.whamcloud.com/browse/LU-12325
https://jira.whamcloud.com/browse/LU-10948
https://jira.whamcloud.com/browse/LU-12644
https://jira.whamcloud.com/browse/LU-12550
https://jira.whamcloud.com/browse/LU-10191

Performance Improvements for Flash (2.124) '3:5
Whamcloud

» Reduce server CPU overhead to improve small flash IOPS (LU-11164)
* Reduced CPU usage translates directly to improved IOPS

» Avoid page cache on Idiskfs flash OSS (LU-11347) *®

212 *Avoids CPU/lock overhead/lock for page eviction H
» TRIM flash storage on Idiskfs (LU-11355)

* Release unused blocks of filesystem via fstrim

» Self Extending Layouts (LU-10070, Cray)
* Avoids out-of-space in the middle of files

Single Client 4KB Random Read I0OPS

Network B/W Limit

1200

=
o
o
o

800

I0PS (Kops/sec)

600
=B=h? 10

400 b2 12
213 * Good for PFL with smaller flash OSTs than disk OSTs =®-==master
. , 200 e—>€ St
2.14 p Continued reductions of overhead and latency ;o omendBAv B
* Improve small, unaligned and interleaved writes ek 1K (Bitzjs) 64K 128K

8 whamcloud.com

https://jira.whamcloud.com/browse/LU-11164
https://jira.whamcloud.com/browse/LU-11347
https://jira.whamcloud.com/browse/LU-11355
https://jira.whamcloud.com/browse/LU-10070

Ongoing ldiskfs Improvements (2.13+))

2/

Whamcloud

» Major 1diskfs features merged into upstream ext4/e2fsprogs
* Large xattrs (up to 64KB/xattr) stored in separate inode (ea_inode)
* Large directories over 10M entries/2GB (large_dir)
2.13 * Project quota accounting/enforcement (project)
2.14 P One more Lustre-specific feature remains to be merged to ext4/e2fsprogs
* Extended data in directory (dirdata) - needs unit test interface before merge
P Existing ext4 features available that could be used by Lustre on 1diskfs
* Efficient block allocation for large OSTs (bigalloc)
* Tiny files (1-600/3800ish bytes) stored directly in the MDT 1KB/4KB inode (inline_data)
2.15 * Metadata integrity checksums (metadata_csum)
» New ext4 features currently under development
* Data Verity — Merkle tree of data checksums stored persistently on read-only files
* Directory shrink — reduce directory block allocation as files deleted

9 whamcloud.com

File Level Redundancy (FLR) Enhancements (2.13+) S)

/

Whamcloud

» Lustre-level mirroring for files, configured arbitrarily per file/directory
» Mirror NOSYNC flag + timestamp to allow file version/snapshot (LU-11400)
» Mount client directly on OSS without impacting recovery (LU-12722)

2.13 p» 1fs mirror resync/delete --pool to simplify tiering (LU-11022)

2.14 P Erasure coding adds redundancy without 2x/3x mirror overhead (LU-10911)
* Add erasure coding to new/old striped files after write done
* Leverage CPU-optimized EC code (Intel ISA-L) for best performance
* For striped files - add N parity per M data stripes (e.g. 16d+3p)
* Fixed RAID-4 parity layout per file, declustered Parity across files to avoid IO bottlenecks

2.15 » HSM in composite layout (LU-10606)
* Allow multiple archives per file (S3, tape, ...)
* Allow partial file restore from archive

. _ . o HDD Object k (STALE) delayed resync
TBD b File version/reflink within namespace?

* Access like VAX/VMS using "filename,1"? HSM S3 Archive

10 whamcloud.com

https://jira.whamcloud.com/browse/LU-11400
https://jira.whamcloud.com/browse/LU-12722
https://jira.whamcloud.com/browse/LU-11022
https://jira.whamcloud.com/browse/LU-10911
https://software.intel.com/en-us/storage/ISA-L
https://jira.whamcloud.com/browse/LU-10606

2.13

Miscellaneous Improvements (2.13/2.14) '3:5
Whamcloud

» Foreign Layout file/directory in namespace (DAQOS, CCl) (LU-11376 Intel)

» Overstriping allows multiple file stripes per OST (LU-9846 Cray/WC)
* Useful for shared-file workloads or very large OSTs

» statfs () optimization for specific workloads (LU-12368, LU-12025)
» 1fs find integration with Lazy Size-on-MDT (LU-11367)
» Upstream kernel client cleanups still under active development/merge (ORNL/Suse)

2.14

11

» Pool Selection Policy by extension, NID, UID/GID (LU-11234)

» Dynamic OSS page cache based on RPC |10 size (LU-12071)

» fallocate() for file preallocation (ldiskfs only), hole punch (LU-3606)
» statx() for lightweight attribute fetching (LU-10934)

» O_TMPFILE for creating temporary files outside namespace (LU-9512)

whamcloud.com

https://jira.whamcloud.com/browse/LU-11376
https://jira.whamcloud.com/browse/LU-9846
https://jira.whamcloud.com/browse/LU-12368
https://jira.whamcloud.com/browse/LU-12025
https://jira.whamcloud.com/browse/LU-11367
https://jira.whamcloud.com/browse/LU-11234
https://jira.whamcloud.com/browse/LU-12071
https://jira.whamcloud.com/browse/LU-3606
https://jira.whamcloud.com/browse/LU-10934
https://jira.whamcloud.com/browse/LU-9512

Pool Quotas for OSTs (LU-11023)

(2.14+ Cray) =)
Whamcloud

> ACCOUHt/Ilmlt Space for OSTS Ina SpeCIfIC pOOI /Main Metadata Filesystem Capacity% GId Tier Erasure COD
* Control usage of small flash OSTs in tiered config arastsHbTs)

(hdd OST Pool) (archive OST Pool)
» Use existing Lustre quota infrastructure

* OST already tracks space per UID/GID/ProjID
* Pool usage based on sum of current OSTs in pool

> Add pool quota limits per UID/GID/ProjiD | & 5231:;15.% %

Servers

(1000s)
* No extra accounting on the OSTs k

&(((O }
(((o

H—©

H—©]
H—«
H—«

2.14 + Only new aggregation/reporting by MDS

TBD B Add MDT pools after OST pools complete .
* Manage DoM space usage
* Allow different MDT storage classes Policy Lustre Clients
Engine (10,000s)

12

whamcloud.com

https://jira.whamcloud.com/browse/LU-11023

Client-side Data Encryption at Rest (LU-12755) (2.15))

2/
Whamcloud
» Protect from storage theft/mistakes network/admin snooping
» Encryption on Lustre client down to storage
* Applications see clear text in client cache 01000010010101010100101010101
. . 10010101010100101010101001010010100
* Data is encrypted before sending to servers 010010101010100101010101001010010101010010
H H%'H 10010101070100101071010100101001010107001
* Data is decrypted after receiving from servers e
* Servers/storage only see encrypted data/filenames M
. . 010000100101010107100101010100 R 0010101010010001001
* Only client nodes need access to user encryption keys 1001000010010101010 f101010101081001010101001000100
. . 1001000010010101010 P
* Transparent to backend filesystem/storage (ldiskfs/ZFS) 01001000010010101010 D1001010101001000100
. . . 101010010000100101010 D10100101010100100010
* Utilize larger client CPU/accelerator capacity 0010101010100101010 1001000100101010101
. e e . 010000100101010101 100101010900100010
» Ext4/f2fs fscrypt library/tools base (don't invent it!) 01000010010101010] JOPOTOTOTORINY 100101010100100010
10010000100101010101001010101010010100101010100
1 H H 00100101010101001010101010010100101010100100
* Tunable encryption settlng/key(s) per directory tree AR A
* Per-file encryption key(s), itself encrypted by user key B A A

. . . . 1010100101010101001010010
o Fast and secure deletion of file once per-file key is erased

* Filenames encrypted in MDT directory entries

13 whamcloud.com

https://jira.whamcloud.com/browse/LU-12755

Metadata Writeback Cache (WBC, LU-10983) (2.154) ‘S:}
Whamcloud

» Create new dirs/files without RPCs in client RAM (or local NVMe)
* Lock new directory exclusively at mkdir time
* Cache new files/dirs/data only in RAM/local NVMe until cache flush

» No RPC round-trips for file modifications in new directory

» Files globally visible on flush to MDS, normal usage thereafter
* Flush top dir to MDS upon other client access, lock conflict
o Create top-level entries, exclusively lock new subdirs, release parent
o Repeat as needed for portion of namespace being accessed remotely
* Flush rest of tree in background to MDS/OSS by age or size limits

» Basic WBC prototype developed to test concept
* No cache/quota/space limits, no background flushing, no batching, ...
2.15 * 10-20x single-client speedup in early testing (untar, make, ...)

2.16 P Aggregate operations to server to improve performance
* Batch operations in one RCP to reduce network traffic/handling
* Batch operations to filesystem to reduce disk IOPS

14 whamcloud.com

https://jira.whamcloud.com/browse/LU-10983

Client Container Image (CCl) (TBD))

2/

Whamcloud

4 Client N Client)

. » Ext4 filesystem images used ad-hoc with Lustre in the past

Cl
Files & |II|I * Read-only cache of many small files manually mounted on clients
Dirs

* Root filesystem images for diskless clients/VMs

» Container Image is loopback 1diskfs mount on client
* Whole directory tree (maybe millions of files) in one Lustre image file
* Best for self-contained workloads (e.g. embarrassingly parallel)
* Optimize common Al, Genomics workloads

» CCl integrates container image handling with Lustre
* Image is registered to Lustre directory to automate future access
* Transparently mounts registered image at client on directory access
* Image data blocks read on demand from OST(s) and/or client cache
* Images still part of namespace, allow some sharing between clients

whamcloud.com

Single Client 32KB File Create Performance (MDS vs. CCl))

2/

600,000 3.10 CCI File Create/s (mean of 3 iterations) 20000
s 3.10 MDS File Create/s (RHEL 7.5)
mmmmm 4.15 CCI File Create/sec (Ubuntu 1804)

18000
3.10 CCI 10 Bandwidth (MB/s)
500,000 3.10 MDS I0 Bandwidth (MB/S)
4.15 CCI 10 Bandwidth (MB/s) 16000
14000
400,000
»
12000 &
$ =
£ £
£ 300,000 10000 ©
< 3
2 ©
Fird c
8000 &
200,000
6000
4000
100,000
2000
o IR o

1x12k 2x12k a4x12k 8x12k 12x12k 16x12k 16x100k 16x200k 16x400k
#threads/CClI Filesystems

P Kernel 4.15 CCl improvement due to improved kernel loopback driver
P Early testing of CCl prototype shows promise

16 whamcloud.com

CCl Performance Optimization Areas)

2/

Whamcloud

4 Client N Client)
C

CI_I » Low I/0 overhead, few file lock(s), high IOPS per client
Ill * Readahead and write merging for data and metadata
* Client-local in-RAM filesystem operations with very low latency
P Access, migrate, replicate image with large bulk OSS RPCs
* Thousands of files aggregated with MB-sized network transfers
* Leverage existing high throughput OSS bulk transfer rates
* 1GB/s 0SS read/write provides about 30,000 32KB files/sec
P Unregister+delete CCl to remove all its files with a few RPCs
* Simplifies user data management, accounting, job cleanup
* Avoid MDS overhead dealing with large groups of related files

whamcloud.com

CCI-RO

Dirs

9 Client y

18

;S:}
CCI Access Models Whamcloud

» Need to integrate image handling on Lustre client/MDS
* Integrate CCl creation with job workflow is easiest
* CCl layout type on parent directory creates CCl upon mkdir
* Improve 1diskfs online resize to manage image size

» One client exclusively mounts CCl(s) and modifies locally
* For initial image creation/import from directory tree
* For workloads that run independently per directory tree
» Multiple clients read-only mount single image
* Shared input datasets (e.g. gene sequence, Al training)
» MDS exports shared read-write image to many clients
* Internal mount at MDS attaches image to namespace
* Use Data-on-MDT to transparently export image tree to clients
» Process whole tree of small files for HSM/tiering
* Efficiently migrate tree to/from flash tier, to/from archive

whamcloud.com

Comparison and Summary of WBC vs. CCl

Metadata Writeback Cache Client Container Image

* Keep normal namespace * Segregated directory subtree

* Fully transparent to users and apps * Needs directive from user/job to create
* Very low latency metadata operations * Not for all usage patterns

* Faster single client performance * Faster aggregate system performance

* Network batch RPCs improves other ops * Network bulk 10 reduces MDS workload
* Lower total overhead due to fewer layers * Aggregation simplifies dataset handling
* Fast unlink, dataset prefetch
* Usable for metadata tiering/HSM

* Significant improvements for evolving HPC workloads
* Leverages substantial functionality that already exists

S

7/

Whamcloud

