

Providing Australian researchers with world-class computing services

LAD'14 - Lustre HSM

Daniel Rodwell
Manager, Data Storage Services

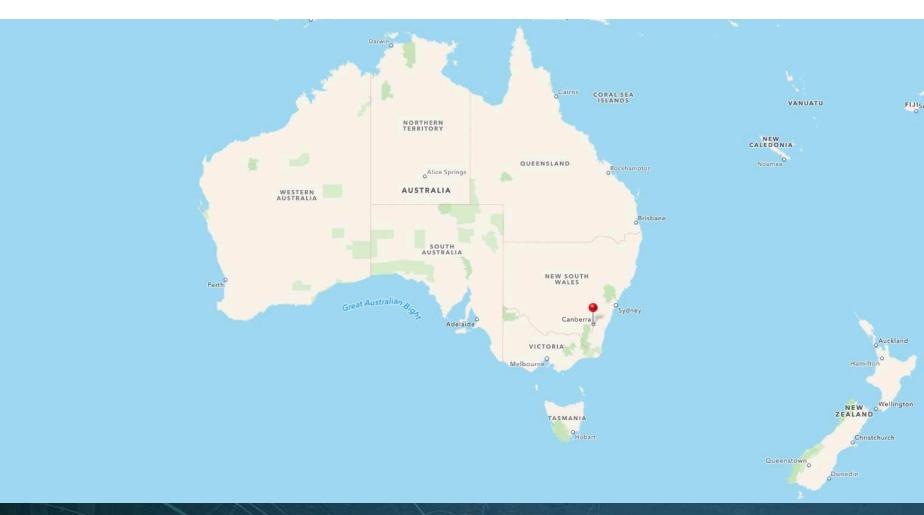
September 2014

nci.org.au

- What is NCI
- Petascale HPC at NCI (Raijin)
- Storage at NCI
 - Lustre Filesystems
 - Other
- Lustre HSM Project
 - History & Requirements
 - Design
 - Sizing
 - Challenges

What is NCI?

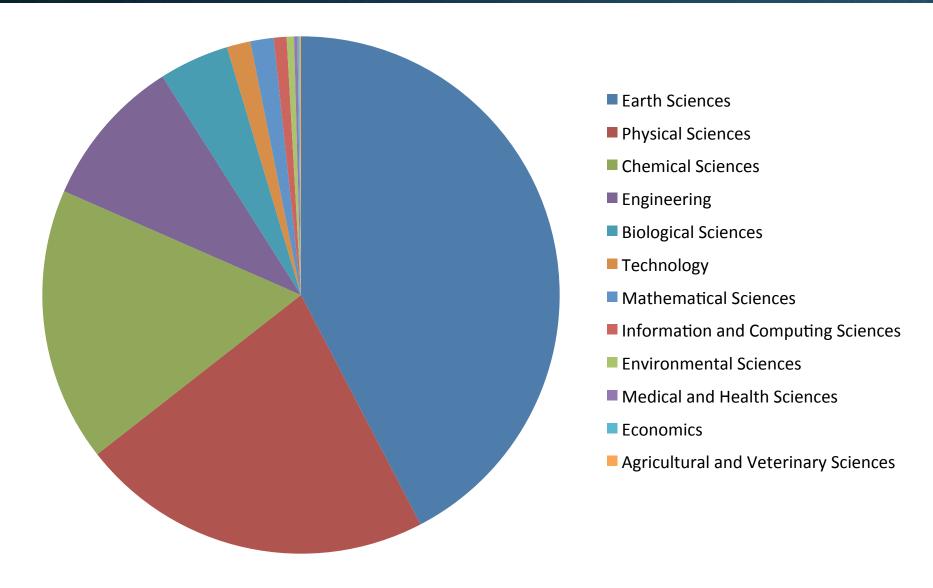
- NCI is Australia's national high-performance computing service
 - comprehensive, vertically-integrated research service
 - providing national access on priority and merit
 - driven by research objectives
- Operates as a formal collaboration of ANU, CSIRO, the Australian Bureau of Meteorology and Geoscience Australia
- As a partnership with a number of research-intensive Universities, supported by the Australian Research Council.



- In the Nation's capital Canberra, ACT
- at its National University The Australian National University (ANU).

Research focus areas

- Climate Science and Earth System Science
- Astronomy (optical and theoretical)
- Geosciences: Geophysics, Earth Observation
- Biosciences & Bioinformatics
- Computational Sciences
 - Engineering
 - Chemistry
 - Physics
- Social Sciences
- Growing emphasis on data-intensive computation
 - Cloud Services
 - · Earth System Grid



- 3,000+ users
- 10 new users every week
- 600+ projects

Astrophysics, Biology, Climate & Weather, Oceanography, particle Physics, fluid dynamics, materials science, Chemistry, Photonics, Mathematics, image processing, Geophysics, Engineering, remote sensing, Bioinformatics, Environmental Science, Geospatial, Hydrology, data mining

'Raijin' – 1.2 PetaFLOP Fujitsu Primergy Cluster

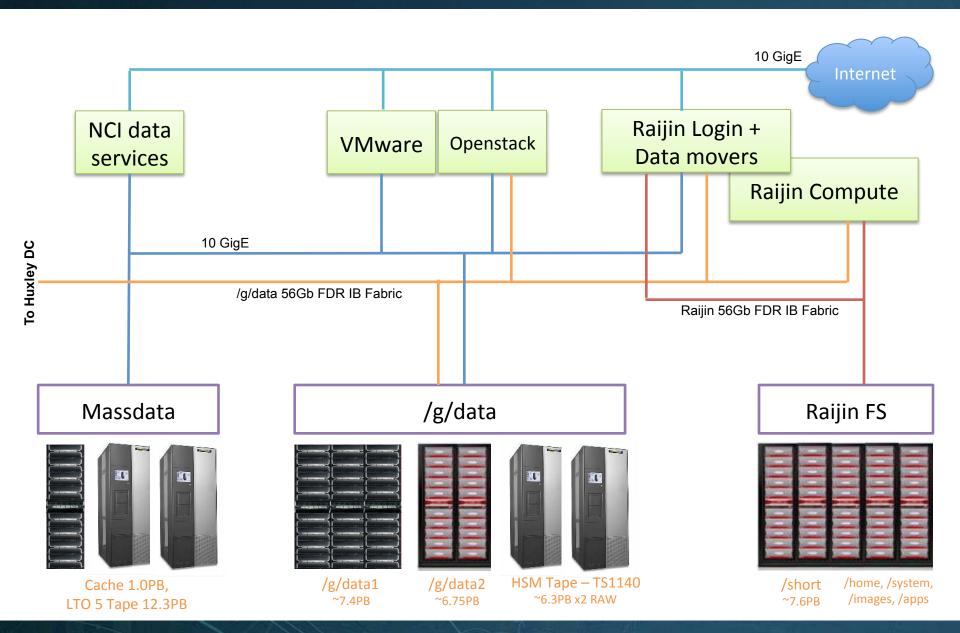
Petascale HPC at NCI

Raijin Fujitsu Primergy cluster, June 2013:

- 57,472 cores (Intel Xeon Sandy Bridge, 2.6 GHz) in 3592 compute nodes;
- 157TBytes of main memory;
- Infiniband FDR interconnect; and
- 7.6 Pbytes of usable fast filesystem (for shortterm scratch space)
- 24th fastest in the world on debut (November 2012); first petaflop system in Australia
 - 1195 Tflops, 1,400,000 SPECFPrate
 - Custom monitoring and deployment
 - Custom Kernel, CentOS 6.5 Linux
 - Highly customised PBS Pro scheduler.
 - FDR interconnects by Mellanox
 - ~52 KM of IB cabling.
 - 1.5 MW power; 100 tonnes of water in cooling

22PB High Performance Storage

Storage at NCI


Lustre Systems

- Raijin Lustre HPC Filesystems: includes /short, /home, /apps, /images, /system
 - 7.6PB @ 150GB/Sec on /short (IOR Aggregate Sequential Write)
 - Lustre 2.4.2 + Custom patches (DDN). v2.5.3 scheduled for 1st October
- Gdata1 Persistent Data: /g/data1
 - 7.4PB @ 21GB/Sec (IOR Aggregate Sequential Write)
 - Lustre 2.3.11 (IEEL v1). IEEL 2 update scheduled for 1st half 2015
- Gdata2 Persistent Data: /g/data2
 - 6.75PB @ 46GB/Sec (IOR Aggregate Sequential Write)
 - Lustre 2.5.3 (IEEL v2.0.1)

Other Systems

- Massdata Archive Data: Migrating CXFS/DMF, 1PB Cache, 6PB x2 LTO 5 dual site tape
- OpenStack Persistent Data: CEPH, 1.1PB over 2 systems
 - Nectar Cloud, v0.72.2 (Emperor), 436TB
 - NCI Private Cloud, 0.80.5 (Firefly), 683TB

High Performance Persistent Data Stores

Lustre HSM Project

Previous Systems

900TB Lustre 1.8 Filesystem (/g/data)

and

- 1.4 PB CXFS Filesystem (/projects)
- dual state HSM to DMF
- Backed by 2x LTO5 Tape Libraries
- Needed significant capacity growth to accommodate large reference data sets required by researchers
- Scalability concerns for Petascale HPC and beyond workloads

Original 900TB gdata MDS/OSSes

Data Storage Requirements

- High Performance, High Capacity Storage capable of supporting HPC connected workload.
- Persistent Storage for Active Projects and Reference Datasets, with 'backup' capability.
- 14PB required by end of 2014.
- Modular design that can be scaled out as required for future growth
- 20+ GB/sec minimum performance, online
- Available across all NCI systems (Cloud, VMWare, HPC) using native mounts and 10/40Gbit NFS.

SGI IS4600 Disk Enclosures ready to be installed

Gdata Persistent Data Stores

- /g/data 1 7.4PB capacity
 - 4.2PB used, 150M inodes
- /g/data 2 6..75PB capacity
 - OPB used, pre-production, go-live October 2014
- Approx 300-400M inodes per /g/dataN
- 14.1PB, 800M+ inodes (possibly 1B inodes?)

• Backups?

- Traditional 'Backup' not viable interval? Deep traversal of directory structures?
- Data change between start and end of backup event?
- Calculation of difference between backup events takes days/weeks
- Backup impact on filesystem performance, particularly metadata load on MDS

HSM as a backup - Lustre HSM & Changelogs

- Lustre MDS knows which files are being accessed & altered
- Activity logged in a 'changelog'
- No need for deep traversal if you know what is being altered.
- 'backup' is always occurring, light persistent load not periodic intense loads

Gdata1 Lustre servers are Dell R620 v1

MDS

Dual 2.90GHz E5-2690 Xeon (*Sandy Bridge*) 8-core CPUs 768GB LRDIMM DDR3

OSS

Dual 2.00GHz E5-2620 Xeon (*Sandy Bridge*) 6-core CPUs 256GB RDIMM DDR3

2 MDS (1 HA pair) **44 OSS** (22 HA pairs)

Current image

CentOS 6.4

In Kernel OFED

Lustre v2.3.11 (IEEL v1.0 + patches)

corosync/pacemaker

Gdata1 Object Store Building Blocks

- Storage for Gdata1 is built using SGI's Infinite
 Storage block storage arrays, with OSS-OST 8Gbit
 Fibre Channel interconnects
- Type 1 Building Block (x 10)
 - SGI IS 4600 Array
 - 480 x 2TB 7.2K SATA disk
 - 4 x OSSes per IS4600 (2x HA Pairs)
 - 46 x RAID 6 (8+2) 14.5TB pools (OSTs)
 - 11-12 OST per OSS, 22-24 per HA pair
- Type 2 Building Block (x2)
 - SGI IS 5500 Array
 - 240 x 3TB 7.2K NL-SAS disk
 - 2 x OSSes per IS5500 (1x HA Pair)
 - 30 x DDP 14.55TB pools (OSTs)
 - 15 OST per OSS, 30 per HA pair

Type 1 – IS4600

Type 2 – IS5500

Gdata2 Lustre servers are Dell R620 v2

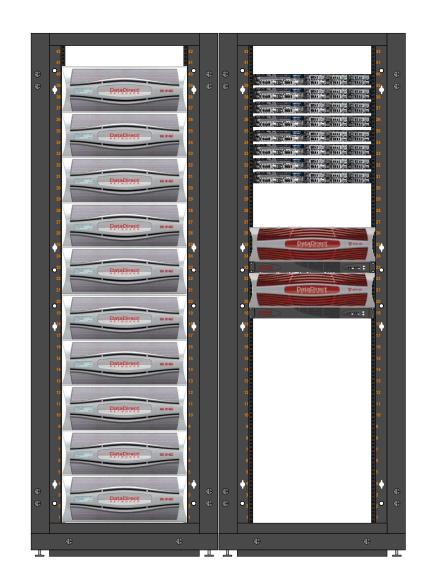
MDS

Dual 3.00GHz E5-2690v2 Xeon (*Ivy Bridge*) 10-core CPUs 768GB LRDIMM DDR3

OSS

Dual 2.60GHz E5-2630v2 Xeon (*Ivy Bridge*) 6-core CPUs 256GB RDIMM DDR3

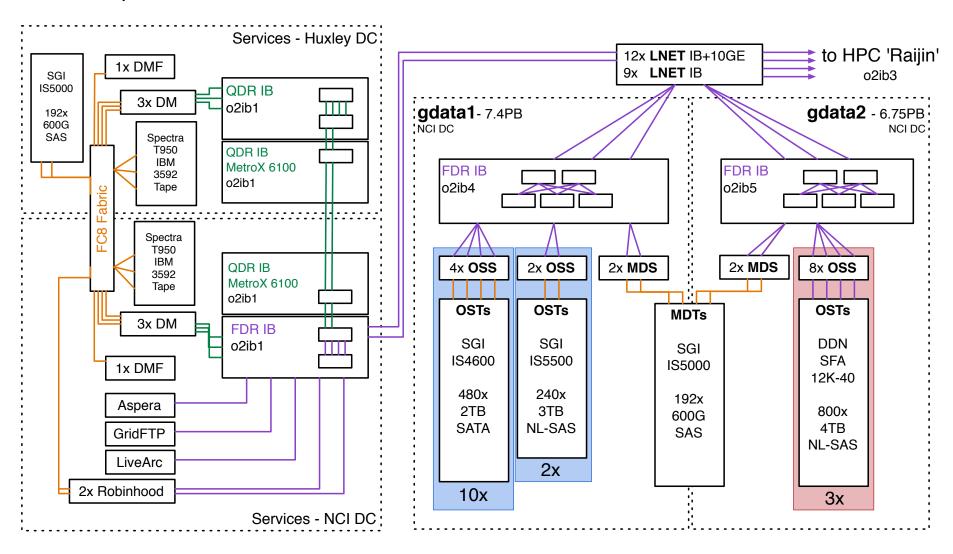
2 MDS (1 HA pair) **24 OSS** (12 HA pairs)


Current image

CentOS 6.5
Mellanox OFED 2.0.1-6
Lustre v2.5.2 (IEEL v2.0.2)
corosync/pacemaker

Gdata2 Object Store Building Blocks

- Storage for Gdata2 is built using DDN's SFA12K-40IB block storage appliances, with OSS-OST FDR IB interconnects.
- Building Block (x 3)
 - DDN SFA12K-40IB, with 10x SS860 84 bay enclosures
 - 800x 4TB 7.2K NL-SAS disk
 - 8 x OSSes per SFA-12K (4x HA Pairs)
 - 80 x RAID 6 (8+2) 32TB pools (OSTs)
 - 10 OSTs per OSS, 20 per HA pair


Gdata 1 & 2 Metadata Building Blocks

- MDT storage for both Gdata1 and Gdata2 is built using a shared SGI Infinite Storage 5000 block storage array, with MDS-MDT 8Gbit Fibre Channel interconnects
- Array:
 - 192 x 600G 15K SAS
 - Dual 8Gbit FC Controllers
 - 2 x Qlogic 8Gbit SanBox 5800 FC Switches
- Gdata1
 - 2x MDS
 - 40 disk 600G 15K SAS DDP pool
- Gdata2
 - 2x MDS
 - 2 x 48 Disk 600G 15K SAS pools, XVM together
 - 1 preferred pool per controller

Fabric Layout

HSM Configuration

- Essentially create a backup, rather than migrating tiers
- All Lustre objects to be Dual Stated i.e. exist both on Lustre Disk, HSM Tape
- Backend tape to be Dual Site i.e. copied to primary and secondary tape library
 - for site level protection (Disaster Recovery) and
 - tape level protection (tape fault)

HSM Stack

- Lustre v2.5 Front End
- Robinhood Policy Engine (2.5.3)
- SGI DMF Copytool v1.0
- SGI DMF 6.2 Tape Back-End (+ ISSP 3.2 / CXFS 7.2)
- Spectra Logic T950 Tape Library
- IBM 3592 Tape System, TS1140 Drives, JC Media

- Dedicated DMF instance to service workload
- 2x DMF Controllers
 - SGI C2108-RP2 Servers
 - Dual 2.6GHz E5-2670 8C Xeon (Sandy Bridge)
 - 256GB RDIMM DDR3
 - 2x Quad Port 8GBit FC HBAs
 - SLES 11 SP3
 - DMF 6.2, ISSP 3.2, CXFS
- 6x Lustre <> DMF Datamovers
 - SGI C2108 TY-11 Servers (c.2011)
 - Dual 2.4GHz E5620 8C Xeon (Westmere)
 - 48GB RDIMM DDR3
 - Dual Port QDR IB HCAs
 - 2x Dual Port 8GB FC HBAs
 - SLES 11 SP3 (3.0.10)

Lustre HSM Data movers (previous generation OSSes)

Lustre HSM

Challenges & Experience so far

Existing Tape System

- Existing DMF deployment Massdata Filesystem: 1PB cache, 6PB x2 LTO 5 Tape
- Migrating filesystem primarily offline, dual site copy tape
- Mix of writes and recalls, many tape movements and load cycles
- 2x Spectra Logic T950 libraries (reconfigured as 4 frame each)
- 54x IBM Ultrium LTO 5 drives (140MB/sec ea) across 2 libraries
- 4200 LTO5 Tapes each library. 1 Robotics unit per Library.

Anticipated Lustre HSM Workload

- Dual-state (online & Tape), Dual Site (2 libraries, 1 copy each)
- Primarily write biased workload
- Few recall events required for recovery only (user, disaster)
- Supporting high performance filesystems (21GB/sec + 46GB/sec)
 - Expected to grow to future gdata3, possibly 90+GB/sec
- Large streaming writes (DMF will attempt to optimise tape layout)
- Very large 'initial' copy on HSM enable (1-2PB?)
 - Likely to monopolise tape drives and library for weeks

Challenge #1 – Tape Libraries

Answer – Additional Tape Libraries

- 2x new Spectra Logic T950 Universal Libraries
- Configured for IBM 3592 'Jaguar' Tape
- Fewer, but faster + larger capacity drives
- Media up-format capability to newer generation
- More Libraries = more robotics units

Initially:

- 6x TS1140 drives per Library (350MB/sec ea)
- 1584x 'JC' Media (4TB uncompressed ea)

Early 2015:

- Upgrade to next generation drives (TS1150?)
- Up-format existing media + higher capacity next generation media (xxTB?)
- Well suited for write biased, streaming performance, fewer load cycles

New Spectra Logic T950 'Jaguar' TS Library build

Challenge #2 – Robinhood Resources

- Robinhood sizing resources
 - Server hardware how big?
 - Database storage performance?
 - Database tuning?
 - Changelog performance impact on MDS?

Fact-finding

- Configured & enabled lustre changelogs on /gdata1 during period of low filesystem utilisation
- Observed performance over time (very little impact likely ~ %5)
- Analysed changelogs entries per hour, entries per 24 hours
 - Rough guide of required database insertions/updates per sec
- MDS/MDT performance will be a limiting factor on initial scan
- Varied DB storage types (SSD, 10K SAS, 15K SAS) and observed RBH changelog rate processing impact.

Challenge #2 – Robinhood Resources

- Server Hardware repurposed existing
 - 2x Fujitsu RX300 S7 (HA Pair), each with
 - Dual 2.6GHz E5-2670 8C Xeon (Sandy Bridge)
 - 128GB RDIMM DDR3
 - FDR InfiniBand HCA
 - Dual Port 8GBit FC HBAs
 - * 3x Dual Port Intel X520 10GE NICs for test below

- Storage Array for Robinhood MySQL Database
 - Evaluation system NetApp EF-550 'All-flash' Array
 - 450,000 IOPS sustained
 - 24x 800GB SSDs in 2RU
 - 8x iSCSI 10GE host ports
 - Benchmarked up to 320,000 4K IOPS with single host, using 6 of 8 available 10GE ports (RX300 CPU limited)
 - Essentially uncapped IOPS for testing

Challenge #2 – Robinhood Resources

- Storage Array for Robinhood MySQL Database
 - For Production deployment
 - starting point, can grow later
 - SGI IS5000 #2 at 2nd datacentre, also hosting other applications
 - 192x 600G 15K SAS, 8Gbit Fibre Channel
 - Using 2x 10 Disk RAID 10 Pools, XVM together, 1 preferred pool per controller
 - ~ 4000 Read IOPS, 2000 Write IOPS
 - ~ 1.9TB size

Database

- Storage optimised for 4K IO, tune for transactional rather than streaming or capacity
- 150M inodes used at time on /g/data1 = 99GB MySQL Database after initial scan
- Can easily relocate MySQL database storage later
- Aim for most of database / all indexes to be in memory (tune MySQL appropriately)
- HA Pair of Robinhood/MySQL servers 1 active per gdata filesystem

Challenge #3 – Lustre Bug

- Hit LU-5405: 'Performance Issue while using Robinhood in changelog mode'
 - Very similar conditions to reported bug (filesystem 150M inodes, 3600+ clients)
 - As the Lustre changelog grows, a condition can occur where an ever increasing amount of time is required to process the entries
 - MDS appears to level out at processing about 30 changelog records per second, irrespective of backend database server/storage
 - Compounding backlog of events to deal with (insert / clear)
 - Active MDS is eventually overwhelmed
 - High load average
 - MDS processing changelogs (slowly) rather than servicing OSS requests
 - Filesystem unresponsive (unscheduled downtime)
 - Currently disabled on /g/data1 (v2.3.11) until fix applied

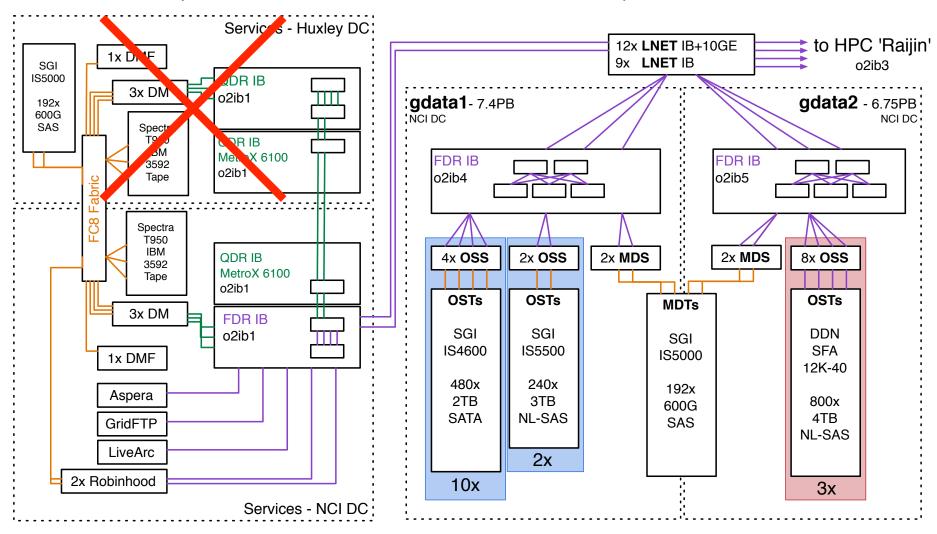
Challenge #4 – DMF disk (home/cache/work filesystem)

- DMF home, cache, work filesystem
 - DMF uses an intermediate XFS filesystem in front of tape tier
 - Basically a pool of inodes acting as pointers
 - Allows presentation of browable 'shadow' filesystem
 - But...
 - 1 lustre object != 1 inode on DMF intermediate XFS filesystem (same for POSIX copytool)

```
ustreHSM-DMF:/mnt/tier1/Lustre_HSM/shadow # Is -lah
total 8 0K
           2 root root 4 0K Mar 12
drwxr-xr-x 72 root root 4 0K Mar 12
                          52 Mar 11
                                     2014 testing 1 -
                          53 Mar 11
                                     2014 testing 13 ->
                                                           /0029/0000/0400/0000/0002/0000/0x2000004
           1 root root
                          53 Mar 11
                                     2014 testing 16 ->
                                                          /0028/0000/0400/0000/0002/0000/0x200000400
                          53 Mar 11
                                     2014 testing 17 ->
                                                           /002b/0000/0400/0000/0002/0000/0x200000400:0x2b:0x0
                          52 Mar 11
                                     2014 testing 18 ->
                                                           /0004/0000/0400/0000/0002/0000/0x200000400
                          53 Mar 11
                                     2014 testing 19 ->
                                                           /002a/0000/0400/0000/0002/0000/0x200000400:0x2a 0x0
                          52 Mar 11
                                     2014 testing 2 ->
                                                          /0003/0000/0400/0000/0002/0000/0x200000400:0x3:0x0
                         53 Mar 11
                                     2014 testing 20 ->
                                                           /002c/0000/0400/0000/0002/0000/0x200000400:0x2c:0x0
           1 root root
                          52 Mar 11
                                     2014 testing 2.1 ->
                                                            /0001/0000/0bd0/0000/0002/0000/0x200000bd0
                          52 Mar 11
                                     2014 testing 21 ->
           1 root root
                                                           /0005/0000/0400/0000/0002/0000/0x200000400:0x5
                                     2014 testing 2.10 ->
           1 root root
                                                             /0015/0000/0bd0/0000/0002/0000/0x200000bd0
                          53 Mar 11
                                     2014 testing_2 100 ->
                                                             /0054/0000/0bd0/0000/0002/0000/0x200000bd0
                          53 Mar 11
                                     2014 testing 2.11 -
                                                             /0014/0000/0bd0/0000/0002/0000/0x200000bd0:0x14:0
           1 root root
                          53 Mar 11
                                     2014 testing 2 12 ->
                                                             /0018/0000/0bd0/0000/0002/0000/0x200000bd0 0x18:0
                          53 Mar 11
                                     2014 testing_2.13 ->
                                                             /0016/0000/0bd0/0000/0002/0000/0x200000bd0:0x16:
           1 root root
                          53 Mar 11
                                     2014 testing 2 14 ->
                                                            /0017/0000/0bd0/0000/0002/0000/0x200000bd0:0x17
                                                             /0019/0000/0bd0/0000/0002/0000/0x200000b
```

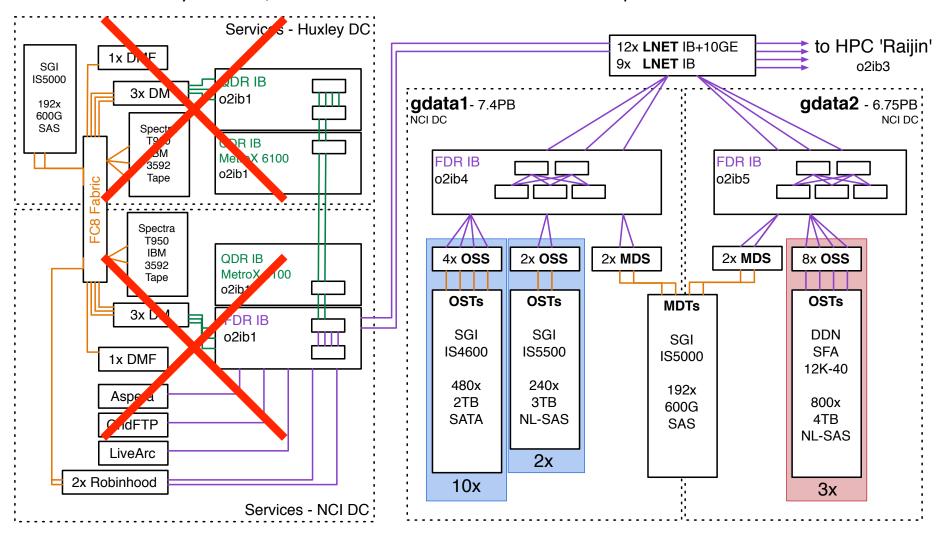
Challenge #4 – DMF disk (home/cache/work filesystem)

- Design of DMF disk
 - Normally DMF copytool will move data directly between Lustre Filesystem, and DMF tape
 - However, need to accommodate disaster recovery situation where Lustre may not be in a viable state
 - Need sufficient 'cache' available to recall data in abnormal conditions
 - at least as large as largest file
 - ability to perform specific tape maintenance if needed (i.e. recall tape on to disk other than Lustre)
 - High IOPS required to perform weekly XFS inode dump (backup of inode 'pointers')
 - Rough guide
 - IOPS 2x 40 disk RAID 10, XVM (80 Disk R10)
 - Approx 16K IOPS read, 8K IOPS write, 23.4TB.
 - Capacity
 - TS 1140 'JC' Media is 4 TB Native, 8TB 2:1 Compressed
 - Guess at next generation: TS 1150? 'JD' media? Maybe 8-10TB, 2:1 @ 20TB??

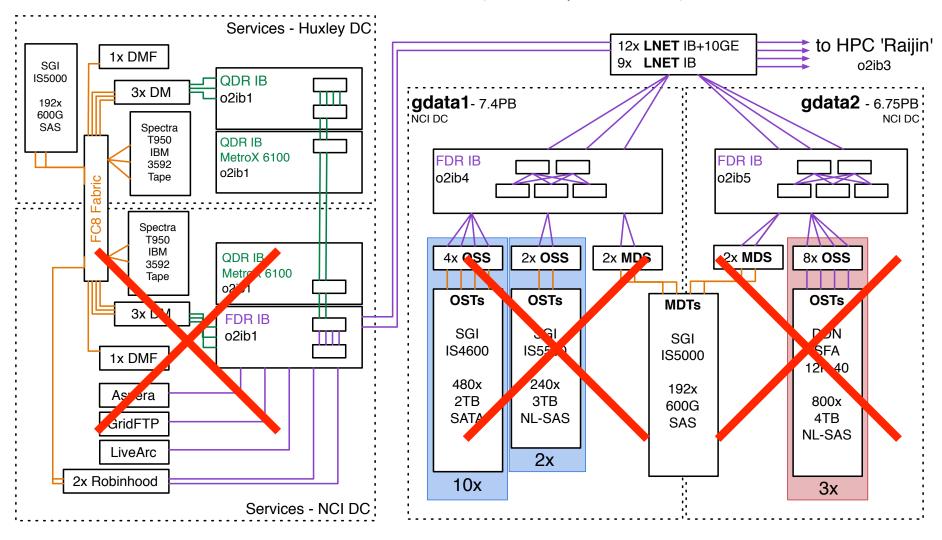


- Data Recoverable after Primary Site incident (NCI DC)
 - Need to accommodate in design
 - Will have many other problems if total loss on primary site
 - No HPC system to use data
 - Where would you 'restore' 14PB to?
 - Still 'nice-to-have' capability
 - Configured so that data can be retrieved if necessary from only 2nd site (even if few TB at a time)
- Cross-site design
 - IS5000 with DMF (shared with Robinhood DB) at 2nd site
 - Existing cross site 8Gbit FC Fabric, between NCI DC <> Huxley DC
 - Mellanox Long Distance IB 'MetroX 6100' links both DCs, 6x QDR IB WAN capable
 - 3 Lustre HSM datamovers per site
 - 1 Spectra Logic T950 3592/TS1140 Library at each DC, dual site mirrored into each

Loss of 2nd Site: OK


- Lustre not directly affected, DMF + Robinhood unavailable. 'HSM' capabilities offline.

Loss of HSM components: OK


- Lustre not directly affected, DMF + Robinhood unavailable. 'HSM' capabilities offline.

Loss of Primary Site: (3), but not fatal.

- Lustre offline. Data secure & recoverable at 2nd site (with low performance)

Lustre HSM

Roll-out plan

- Gdata2 is being built on IEEL v2.02 (Lustre 2.5.2)
- Existing Gdata1 (IEEL 1 + patches) will stay on 2.3.11 until gdata2 is successfully operating
 in full HSM Mode
 - End 2014 (Gdata2 in full HSM), Early 2015 (Gdata1 upgrade)
- Phased rollout of functionality
 - 1. Build /g/data2 filesystem as Lustre 2.5.2 / IEEL 2.0.2
 - 2. Enable + Tune Changelog config for RBH / HSM
 - 3. Build Robinhood, configure policies and types
 - 4. Build DMF components + Datamovers + Tape Library configuration
 - Enable full HSM
- Phased approach allows for easier troubleshooting along the way

Questions?

NCI Contacts

General enquiries: +61 2 6125 9800 Media enquiries: +61 2 6125 4389

Help desk: help@nci.org.au

Address:

NCI, Building 143, Ward Road The Australian National University Canberra ACT 0200

nci.org.au

