

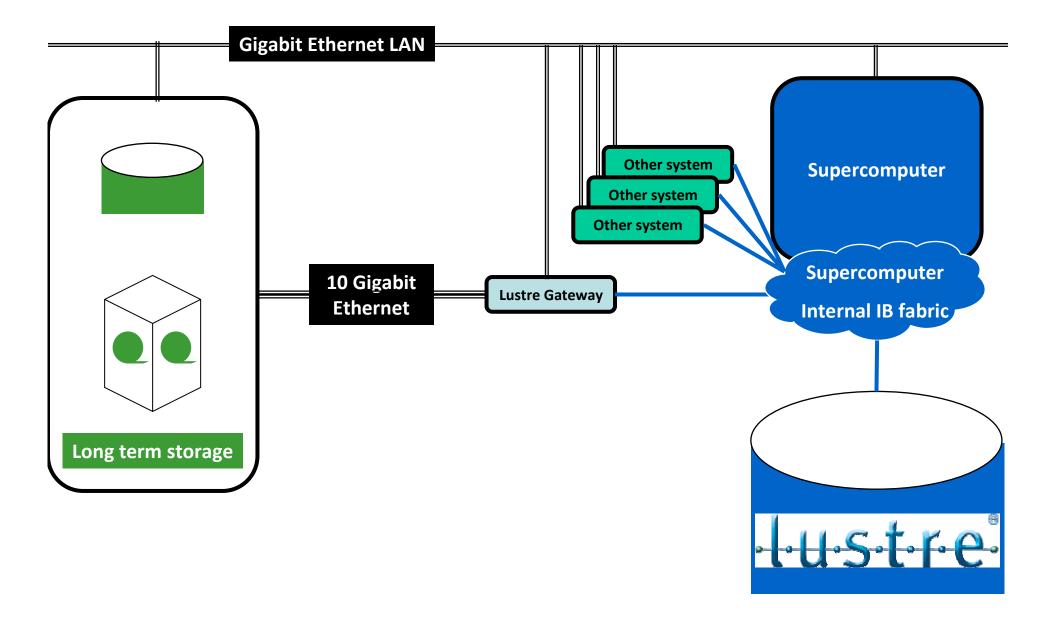
Lustre as a buffer and exchange area at TOTAL

Guy Chesnot - September 24th 2012

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

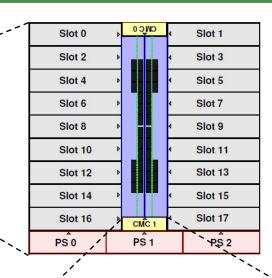
In the beginning

- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits


A standard Lustre configuration

- A Lustre infrastructure based on the supercomputer own interconnect fabric

 InfiniBand
- => Only one data class
- Time passing by
 - New systems attached to Lustre infrastructure
 - Therefore on supercomputer internal fabric



A standard Lustre configuration (cont.)

A bit of explanation SGI Integrated Cluster Architecture

- Built-in IB fabric
- 36 port FDR IB switch ASIC
- Used for building fat tree, hypercube, enhanced hypercube and all-to-all topologies

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

Data classes

- Different lifecycles and usage patterns
 - From some days to some years
 - Short term (some days)
 - Scratch data
 - Very high performance required
 - As close as possible to the supercomputer
 - Mid term (some months): potential migration / unmigration
 - Whatever the supercomputer load and status
 - Used mostly by SMP platforms
 - Long term (some years)
- Data zones
 - Each user should be allowed to access only some datasets

Other needs

- Current status: large Lustre infrastructure
 - Stuck to a supercomputer that might
 - Stop (for maintenance purpose)
 - Change (new system, new provider, ...)
- Need of a new architecture for
 - Fault tolerance
 - Ease of operation
 - Ease of extensions: new systems, new data features
- In summary, get rid of supercomputer's grip

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

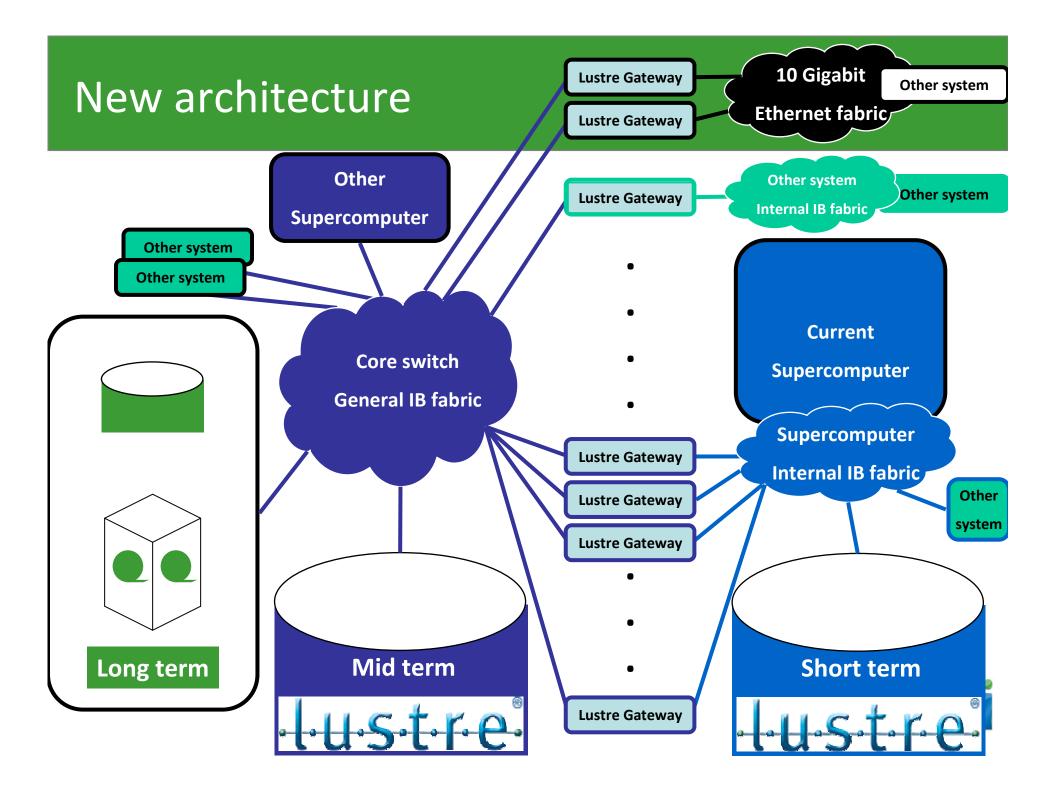
Larger and faster data streams

- Larger input datasets
- Larger streams between scratch data space and long term data space
 - Current pipes are too narrow
 - Datasets cannot move and escape from Lustre infrastructure (tens of Terabytes)
 - Both sides streams
 - Large compute projects may restart later on
- Flush and fill quickly the Lustre space
 - Occupancy rate: 70% to 80%

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

Possible solutions

- Lustre with several attachments
 - Pros: easier implementation
 - Cons: restricted access from beyond security area



Possible solutions (cont.)

Independent Lustre infrastructure

- IB switch
- Lustre gateways
- Pros
 - All requirements satisfied
 - IB topology is customized according to usage
 - Double hypercube for scratch
 - Non blocking for Mid term (could not be achieved on supercomputer fabric for every usage)
 - Data is at the center of stage
 - Several islands revolving around
- Cons: performance requirement harder to achieve

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

Obligations

- Mixing Lustre clients is difficult
 - Theory and real life
 - Which Lustre release?
 - 1.8 was preferred to 2.1 (beginning of 2012)
- Mixing several IB: QDR, DDR, FDR to come
- « Big » Data
 - Large datasets
 - High transfer rates: 20+ GB/s
- By the way let's move to parallel DMF (SGI HSM) ?!

Obligations: performance

Several computer rooms ... on several floors

- 100 m IB links
 - Supercomputer -> long term storage -> SMP usage
 - => Higher latency. Is it acceptable or not?
 - => Mid term only, not for scratch
- Performance
 - Mid term -> supercomputer
 - Mid term <-> Long term storage
 - => numerous gateways
 - => large IB core switch

Drawbacks

- More Lustre gateways on data paths
 - Means higher latencies
 - Balanced by more potential features

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

Implementation not so easy

- No data loss on the way
 - Data replication at every step
- Temporary compute unavailability in some areas when routing rules are applied
- Process per 1 PB slices (file systems)
 - Freeze
 - Move
 - Restart

- In the beginning
- Usual requirements
- Unique requirements
- Possible solutions
- Obligations and drawbacks
- Some difficulties on the way
- In the end: benefits

Benefits

- Lustre operation is free from Supercomputer
 - Halt / maintain supercomputer whenever needed
 - Think ahead of a new supercomputer or other evolutions
 - Many free IB ports on fabric
 - Control users
 - Partition
 - Foreign users
- Migration performance
 - From 10 TB to 120+ TB / day
 - Up to 175 TB -> tape library / day
 - Bottleneck is now the tape library

Benefits (cont.)

- A direct path to Lustre / HSM integration
 - Since Long term island data is already in place
 - And explicit transfers already work
- SGI does not hear of it (should work)!

