

Providing Australian researchers with world-class computing services

Lustre Admins & Developers Workshop 2016

Petascale Data Migration

Daniel Rodwell

Manager, Data Storage Services

September 2016

Australian Research Council

nci.org.au

@NCInews

Agenda

NCI Storage Overview

- Systems & Growth
- Migration Drivers
 - Redistribution of Content
 - Filesystem Decommissioning / Replacement

Performance Profiles

- Filesystem Source & Destination
- Data Migration Nodes
- Considerations & Planning
- Data Migration Tools
 - Quick Comparison of Utilities
 - Performance
- Data Migration Process
 - NCI Approach
 - Performance in Practice
- Issues and Future Considerations

30PB High Performance Storage

Storage at NCI

- NCI is Australia's national high-performance computing service
 - comprehensive, vertically-integrated research service
 - providing national access on priority and merit
 - driven by research objectives
- Operates as a formal collaboration of ANU, CSIRO, the Australian Bureau of Meteorology and Geoscience Australia
- As a partnership with a number of research-intensive Universities, supported by the Australian Research Council.

- Canberra, ACT
- The Australian National University (ANU)

Ingested

100%

100%

100%

100%

100%

100%

100%

How big?

- Very.
- Average data collection is 50-100+ Terabytes
- Larger data collections are multi-Petabytes in size _
- Individual files can exceed 2TB or be as small as a few KB. _
- Individual datasets consist of tens of millions of files _
- Next Generation datasets likely to be 6-10x larger. _
- Gdata1+2+3 = 451 Million inodes stored
- 1% of /g/data1 capacity = 74TB _

NCI ORDS		
Collection	TB Approved	TB Ready
Skymapper (Astronomy)	210.00	210.00
Australian Data Archive (Social Sciences)	4.00	4.00
BPA Melanoma Dataset (Biosciences)	588.00	588.00
Plant Phenomics (Biosciences)	2.00	2.00
Ocean Gen. Circulation Model (Earth Simulator)	27.00	27.00
Year Of Tropical Convection	89.00	89.00
CABLE Global Evaluation Datasets	3.00	3.00
CORDEX Int	2.00	2.00
Coupled Model Intercomparison Project (CMIP5)	1.5PB	> 1,487.00
Reanalysis		207.00
		_

CORDEX Int	2.00	2.00	100%
Coupled Model Intercomparison Project (CMIP5)	1.5PB	1,487.00	100%
Reanalysis		207.00	100%
ACCESS Models	3.9PB	3,896.00	100%
Seasonal Climate Prediction	595.00	595.00	100%
Australian Bathymetry and Elevation reference data	37.00	37.00	100%
Australian Marine Video and Imagery Collection	7.00	7.00	100%
Global Navigation Satellite System (GNSS) (Geodesy)	4.00	4.00	100%
Digitised Australian Aerial Survey Photography	68.00	68.00	100%
Earth Observation (Satellite: Landsat, etc)	1.4PB	1,400.00	100%
IMOS+TERN Australasian Satellite Imagery	568.00	568.00	100%
Satellite Soil Moisture Products	3.00	3.00	100%
Synthetic Aperture Radar	121.00	121.00	100%
BoM Observations	377.00	377.00	100%
BoM Ocean-Marine Collections	287.00	287.00	100%
Aust. 3D Geological Models	1.00	1.00	100%
Aust. Geophysical Data Collection	10.00	10.00	100%
Aust. Natural Hazards Archive	3.00	3.00	100%
National CT-Lab Tomographic Collection	185.00	185.00	100%
TERN øMAST	48.00	48.00	100%
TERN Phenology Monitoring: Near Surface Remote Sen	1.00	1.00	100%
TERN eMAST Data Assimilation	30.00	30.00	100%
CSIRO/BoM Key Water Assets	20.00	20.00	100%
Models of Land/Water Dynamics from Space	16.00	16.00	100%
Totals	10,296	10,296	100%

What do we store?

- High value, cross-institutional collaborative scientific research collections.
- Nationally significant data collections such as:
 - Australian Community Climate and Earth System Simulator (ACCESS) Models
 - Australian & international data from the CMIP5 and AR5 collection
 - Satellite imagery (Landsat, INSAR, ALOS)
 - Skymapper, Whole Sky Survey/ Pulsars
 - Australian Plant Phenomics Database
 - Australian Data Archive
 - EUMETSAT Copernicus Programme Sentinel
 Data
- Large Scale Genomics and Bioinformatics datasets

2x TS 1150 Tape Library 22PB RAW

Lustre Systems

- Raijin Lustre HPC Filesystems: includes /short, /home, /apps, /images, /system
 - 7.6PB @ 150GB/Sec on /short (IOR Aggregate Sequential Write)
 - Lustre 2.5.23 + Custom patches (NCI + DDN)
- Gdata1 Persistent Data: /g/data1
 - 7.4PB @ 54GB/Sec Peak Read
 - Lustre 2.3.11 (IEEL v1)
- Gdata2 Persistent Data: /g/data2
 - 6.75PB @ 65GB/Sec Peak Read
 - Lustre 2.5.42.8 (IEEL v2)
- Gdata3 Persistent Data: /g/data3 -
 - Stage 1: 5.7PB @ 92GB/sec Peak Read
 - Stage 2: 8.2PB @ 120GB/Sec+ Peak Read
 - (Lustre 2.5.42.8, IEEL v2)

Why migrate data between filesystems?

Data Migration

- Reasons for migrating data
 - Migrate data from an old filesystem being decommissioned on to a new system
 - Migrate a dataset or project to a different filesystem for performance, feature or security profile reasons
 - Need to rebalance storage allocation distribution between filesystems to manage overall capacity and growth
 - Duplication of data to multiple filesystems for protection or rollback
 - Staged replacement of Persistent Filesystems continual rolling replacement schedule.

- 3 Years ago...
 - Vayu HPC
 - Previous Gen HPC Lustre Filesystem
 - 800TB, 25GB/Sec
 - Gdata (Original)
 - Persistent Lustre Filesystem on Vayu
 - 900TB, 6GB/sec
 - Projects
 - Dual State CXFS/DMF Filesystem
 - 1.4PB, 3GB/sec
- Migrated over 8PB, 100+ Million files between various internal data systems
- Need to find a solution that can scale to PetaBytes of data.
- Traditional approaches handle GigaBytes, not PetaBytes.

- We have a High Performance Data Problem
 - An individual Project may be 2-3PB, 40+ Million files in size
 - Each file within the dataset or project needs to be read, written and verified
 - The time to process the data must be reasonable
 - A sequential, linear or traditional approach is unlikely to scale
 - Distributed & parallel processing of the problem is likely required

Component Performance & Resources Available

Performance Profiles

Raijin Test Cluster

- 36x Fujitsu CX250 Nodes
- Dual Intel Sandy Bridge Xeon E5-2670, 8C,
 2.6GHz (same spec as main cluster)
- 32GB DDR3
- InfiniBand FDR interconnect, connected to Raijin HPC Fabric
- All Lustre Filesystems mounted

Summary

- 36 Nodes
- 576 Cores
- 36x IB interfaces at 5GB/sec (180GB/sec agg)
- Exemption Can ssh between nodes
- Exemption Can run jobs as root
- Administrative / Test Jobs do not block user jobs.
- Failed Administrative / Test jobs not shared on nodes with user jobs

• Source

- Gdata1
- 54GB/sec peak read performance
- 520 OSTs, 400MB/sec peak R each
- Lustre 2.3.11

Destination

- Gdata3
- 70GB/sec+ peak write performance
- 252 OSTs, 800MB/sec peak W each
- Lustre 2.5.42.8

Preparing to Migrate User Project Data

Considerations & Planning

- Filesystem Bandwidth

- Typically, regular user filesystem access will still be present while an individual project migration is in progress
- We don't want to choke the filesystem with administrative data migration activities, or cause user jobs to go into heavy IO wait
- Use long term monitoring to predict average user bandwidth requirements during migration period. Typically use max 50% of available filesystem bandwidth for project migrations.

– Dry Run

- Dry run in business hours when all system administration staff are present
- Something will break unexpectedly during testing

– Run as Root

- Unless the administrator's account has user/group access permissions to the files, typically you'll be running as root. Plan carefully. Think twice, run once.
- Build a 'Flight Plan' of all commands that you plan to run before you run them.
- There is the potential to overwrite the wrong data, at speed, disastrously, as root.

Dataset

- Determine the size and count of files before the migration, build a test data set to evaluate scaling and timing estimates
- Use a test data set to prove to yourself that the mechanisms/utilities work as expected

Batch Process

- Break up the data into smaller batches within a project, i.e. run each first level subdirectory within the project as its own copy
- Its easier to restart / resume on failure.
- You can have hardware / software failures as any other HPC job could

Data Custodians

- Agreed time with data custodian for migration to occur
- Use dry runs and scaling tests to estimate time required
- Have a rollback plan
- Preserve the original data (restricted access) on the source filesystem for a time period after the initial migration has completed.

Datasets

Determine count and size of dataset

- Use find, du, lfs quota
- Use rbh-lhsm-report for quick summary

group proj1 proj1 proj1 Total:	, sym. , sym. , : 6387696 er	type, link, dir, file, ntries,	count, 4, 149351, 6238341, 10890169082	volum 6 929.67 M 990.45 T 85488 by	ne, sta 59, IB, 'B, rtes used	atus, a n/a, n/a, new, 16 (990.46 5	avg_size 17 6.37 KB 66.48 MB FB)
group proj2 proj2 proj2 Total:	, sym: , sym: , : 1592677 er	type, link, dir, file, ntries,	count, 10358, 11792, 1570527, 25219295366	volum 600.30 K 157.83 M 229.37 T 9719 byt	ne, sta IB, IB, 'B, Les used (2	atus, a n/a, n/a, 1 new, 15 229.37 TH	avg_size 59 13.71 KB 53.14 MB B)
group proj3 proj3 proj3 Total:	, sym. , sym. , . 44874533 e	type, link, dir, file, entries,	count, 404, 1279878, 43594251, 3704084238	volum 13.91 K 5.98 G 3.29 P 427042 b	ne, sta EB, EB, PB, pytes used	atus, a n/a, n/a, new, 8 (3.29 PH	avg_size 35 4.90 KB 31.03 MB 3)

Comparison of toolsets

Data Migration Tools

- Many different options available
 - Lustre has some Lustre-to-Lustre filesystem replication mechanisms
 - Many different copy approaches available
 - Most filesystem migrations at NCI occur on a project by project basis a gradual migration of projects from a filesystem being decommissioned or rebalanced.
 - Options presented here have been found viable for Project / dataset copies between high performance filesystems.
 - Utilities are independent of Filesystem type (work for non-lustre) and do not require a specific release of lustre, and are available today.

Traditional cp

- cp -Rp /path/source /path/dest
- Always an option
- Manual handling required to get performance out of it build and split lists, or assign subdirectories.

Traditional Rsync

- rsync -aAXS --numeric-ids --many-many-options /path/source /path/dest
- Smarter than cp
- Not particularly well optimized for very large files or high bandwidth conditions
- Accurate, reliable, well understood
- Can use initial copy to stage data into place, followed by differential sync
- Manual handling / scripting required to distribute work over multiple nodes
- Large amounts of data will take a long time if not automated and distributed to multiple nodes.

- Pfsync

- <u>https://github.com/martymac/fpart</u>
- <u>http://manpages.ubuntu.com/manpages/wily/man1/fpsync.1.html</u>
- Automate work distribution and queuing over the top of rsync
- Uses fpart to build filelists
- Has queue manager to distribute filelists as jobs to worker rsync processes
- Can use most rsync options
- ... -aAXS --numeric-ids --many-many-options /path/source /path/dest
- Still not particularly optimized for very large files or high bandwidth conditions
- Easy to understand what is going on as it is based on rsync
- Can use initial an copy and difference sync to stage data into place
- Need to figure out partition size parameters for optimal performance and well balanced workload distribution

- dcp2 (distributed copy)

- <u>http://fileutils.io</u>
- <u>https://github.com/hpc/fileutils/blob/master/doc/markdown/dcp.1.md</u>
- Main Contributors LANL, LLNL, ORNL
- MPI application scales very well
- MPI application single node failure is fatal
- May need to tune mpirun parameters.
 - Can exceed memory on node
 - May need to adjust number of processes per host
 - May need to set mpirun bind-to options
- Limited options compared to rsync
- Can break lower performing filesystems with load
- Recommendation start low with fewer nodes and processes, then scale up tests

Example dataset built for test

- Typical NCI project has millions of files
- Individual file size is commonly in the 100MB-150MB range
- Files created using
 - dd bs=1048576 count=100 if=/dev/urandom of=/randomfile.\$number

- Lustre stripe count = 1 for all files (gdata filesystem default)
- Gdata1 = 1.6PB free, 79% Used (when test dataset created)
- Gdata3 = 1.8PB free, 76% Used (at start of each copy run)

Small Scale Test (1T, 10 000 files)

Small Scale Test – Traditional cp

- 1TB
- 10,000 x 100MB files
- 66 Minutes, 12 seconds.

cp -Rp /g/data1/fu2/exampledata/Bin1/Bin1A/Bin111 /g/data3/fu2/ exampletransfer/cptest/

- iotop cp performing a single process copy at approx. 290-340MB/sec
- 350MB/sec is about the average write performance we expect from a gdata1 OST

Small Scale Test (1T, 10 000 files)

- Small Scale Test – Traditional Rsync

- 1TB
- 10,000 x 100MB files
- 4 Hours, 35 Minutes

rsync -aAXS --numeric-ids /g/data1/fu2/exampledata/Bin1/Bin1A/Bin111 /g/ data3/fu2/exampletransfer/rsynctest/

```
bash-4.1# date; time rsync -aAXS --numeric-ids /g/data1/fu2/exampledata/Bin1/Bin1A/
Bin111 /g/data3/fu2/exampletransfer/rsynctest/; date
Fri Sep 9 15:30:28 AEST 2016
    real 261m14.329s
    user 79m46.624s
    sys 222m10.312s
Fri Sep 9 19:51:42 AEST 2016
bash-4.1#
```

- iotop rsync performing a single process sync at approx 35-75MB/sec
- Default Rsync 3.0.6 from Centos 6.7 Repo. No custom compiler options.

- Medium Scale Test fpsync, 16 nodes
 - 10TB
 - 100,000 x 100MB files
 - Fpsync requires the size and count of the worker partitions to be passed to it as command parameters.
 - -n is the number of partitions (jobs)
 - -f is the filecount for each partition
 - -s is the size in bytes for each partition
 - 100,000 files, 10484019363840 bytes (9.535 TiB)
 - - n = nodes x cores x 2 = 16 nodes x 16 cores x 2 = **512**
 - - f = number files / # of partitions = 100000 / 512 = **200** (round up)
 - s = number of bytes / # of partitions = 10484019363840 / 512
 = 20476600320 = 20480000000 (round up)

- Medium Scale Test fpsync, 16 nodes
 - 10TB
 - 100,000 x 100MB files

```
# /sbin/fpsync \-w 'r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21
r22 r23 r24 r25'
-d /g/data3/fu2/fpsync_work
-t /g/data3/fu2/fpsync_tmp
-vv -n 512 -s 2048000000
-f 200 -o '-aAXS --numeric-ids'
/g/data1/fu2/exampledata/Bin1/Bin1A
/g/data3/fu2/exampletransfer/
| tee /g/data3/fu2/fpsync_16_node_10T_test.out
#
```

- Run fpsync in a screen or tmux session
- tee stdout/stderr to a text file for review

Medium Scale Test – fpsync, 16 nodes

- 16 Nodes, 512 Partitions (concurrent sync jobs)
- 10T, 100000 files copied
- 52 Minutes

```
Syncing /g/data1/fu2/exampledata/Bin1/Bin1A => /g/data3/fu2/exampletransfer/
===> Job name: exampletransfer-1473159046-27455
===> Start time: Tue Sep 6 20:50:53 AEST 2016
===> Concurrent sync jobs: 512
===> Workers: r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25
===> Shared dir: /g/data3/fu2/fpsync work
===> Temp dir: /g/data3/fu2/fpsync tmp
===> Max files per sync job: 200
===> Max bytes per sync job: 2048000000
===> Rsync options: "-aAXS --numeric-ids"
===> Use ^C to abort, ^T (SIGINFO) to display status
===> Analyzing filesystem...
===> [QMGR] Starting queue manager ...
===>[QMGR] Starting job /g/data3/fu2/fpsync tmp/work/exampletransfer-1473159046-27455/485 -> r24
<= [QMGR] Job 29881:r18 finished
<= [QMGR] Job 2597:r13 finished
<= [QMGR] Job 2172:r12 finished
<=== [QMGR] Done submitting jobs. Waiting for them to finish.
<=== [QMGR] Queue processed
<=== Parts done: 511/511 (100%), remaining: 0</pre>
<=== Rsync completed without error.
<=== End time: Tue Sep  6 21:42:03 AEST 2016</pre>
```


- Medium Scale Test dcp, 16 nodes
 - 10TB
 - 100,000 x 100MB files
 - dcp only needs the number of processes to run, and the hosts to run on
 - Typically use all 16 cores per node, 16

```
# module load dcp/1.0-NCI2
# mpirun --allow-run-as-root -np 256 -H
r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25 /
apps/dcp/1.0-NCI2/bin/dcp2 -p /g/data1/fu2/exampledata/Bin1/Bin1A /
g/data3/fu2/exampletransfer/
#
```

- Run dcp in a screen or tmux session
- tee stdout/stderr to a text file for review

Medium Scale Test – dcp, 16 nodes

- 16 Nodes, 256 Processes
- 10T, 100000 files copied
- 10 minutes, 16 seconds.

```
[2016-09-06T17:07:30] [0] [../../../src/dcp2/dcp2.c:1404] Preserving file attributes.
[2016-09-06T17:07:30] [0] [../../../src/dcp2/handle args.c:297] Walking/g/data1/fu2/exampledata/Bin1/Bin1A
[2016-09-06T17:07:40] [0] [../../../src/dcp2/dcp2.c:194]
Creating directories.
level=6 min=0 max=1 sum=1 rate=152.188099/sec secs=0.006571
level=7 min=0 max=8 sum=10 rate=260.205469/sec secs=0.038431
level=8 min=0 max=53 sum=100 rate=360.595619/sec secs=0.277319
level=9 min=0 max=0 sum=0 rate=0.000000/sec secs=0.000583
[2016-09-06T17:07:41] [0] [../../src/dcp2/dcp2.c:363] Creating files.
level=6 min=0 max=0 sum=0 rate=0.000000 secs=0.000230
level=7 min=0 max=0 sum=0 rate=0.000000 secs=0.000034
level=8 min=0 max=0 sum=0 rate=0.000000 secs=0.000023
level=9 min=59 max=11772 sum=100000 rate=1617.795179 secs=61.812522
[2016-09-06T17:08:42] [0] [../../src/dcp2/dcp2.c:801] Copying data.
[2016-09-06T17:16:26] [0] [../../../src/dcp2/dcp2.c:1165] Setting ownership, permissions, and timestamps.
[2016-09-06T17:17:46] [0] [../../../src/dcp2/dcp2.c:1505] Syncing updates to disk.
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:124] Started: Sep-06-2016,17:07:30
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:125] Completed: Sep-06-2016,17:17:46
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:126] Seconds: 615.986
[2016-09-06T17:17:47] [0] [../../.src/dcp2/dcp2.c:127] Items: 100111
[2016-09-06T17:17:47] [0] [../../.src/dcp2/dcp2.c:128] Directories: 111
[2016-09-06T17:17:47] [0] [../../src/dcp2/dcp2.c:129] Files: 100000
[2016-09-06T17:17:47] [0] [../../.src/dcp2/dcp2.c:130] Links: 0
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:132] Data: 9.535 TB (10484019363840 bytes)
[2016-09-06T17:17:47] [0] [../../../src/dcp2/dcp2.c:136] Rate: 15.851 GB/s (10484019363840 bytes in
615.986 seconds)
```


- Medium Scale Test dcp vs fpsync, 16 nodes
- Aggregate OST throughput

Source Filesystem: Gdata1 – 25.92GB/sec Read peak Destination Filesystem: Gdata3 – 18.62GB/sec Write peak

Medium Scale Test – dcp vs fpsync

- 10TB
- 100,000 x 100MB files
- 16 Nodes
- Results
 - Fpsync 52 Minutes
 - dcp 10 Minutes, 16 Seconds
- What about Fpsync, re-run with no changes?
 - 2nd pass Fpsync, no data changes 3 Minutes, 33 Seconds
- But...
 - Beware of potential partition imbalance with fpsync if planning a 2 phase transfer, ie bulk data staged into place in the background, then 'offline' differential sync run.
 - A large number of "new files" may end up in few bins for the differential sync, which will result in just a few rsync processes doing the work.

- Large Scale Test dcp, 16 nodes
 - 50TB

#

• 500,000 x 100MB files

```
# module load dcp/1.0-NCI2
# mpirun --allow-run-as-root -np 256 -H
r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25 /
apps/dcp/1.0-NCI2/bin/dcp2 -p /g/data1/fu2/exampledata/Bin1 /g/
data3/fu2/exampletransfer/
```


Large Scale Test – dcp, 16 nodes

- 16 Nodes, 256 Processes
- 50T, 500 000 files copied
- 41 minutes, 10 seconds.

```
[2016-09-06T10:36:22] [0] [../../../src/dcp2/dcp2.c:1404] Preserving file attributes.
[2016-09-06T10:36:22] [0] [../../../src/dcp2/handle args.c:297] Walking /g/data1/fu2/exampledata/Bin1
[2016-09-06T10:36:31] [0] [../../.src/dcp2/dcp2.c:194] Creating directories.
          level=5 min=0 max=1 sum=1 rate=16.317455/sec secs=0.061284
          level=6 min=0 max=4 sum=5 rate=281.455356/sec secs=0.017765
          level=7 min=0 max=23 sum=50 rate=339.404297/sec secs=0.147317
          level=8 min=0 max=105 sum=500 rate=561.026242/sec secs=0.891224
          level=9 min=0 max=0 sum=0 rate=0.000000/sec secs=0.000504
[2016-09-06T10:36:32] [0] [../../src/dcp2/dcp2.c:363] Creating files.
          level=5 min=0 max=0 sum=0 rate=0.000000 secs=0.000195
          level=6 min=0 max=0 sum=0 rate=0.000000 secs=0.000048
          level=7 min=0 max=0 sum=0 rate=0.000000 secs=0.000055
          level=8 min=0 max=0 sum=0 rate=0.000000 secs=0.000053
          level=9 min=1410 max=11169 sum=500000 rate=5297.825804 secs=94.378339
[2016-09-06T10:38:06] [0] [../../.src/dcp2/dcp2.c:801] Copying data.
[2016-09-06T11:15:43] [0] [../../../src/dcp2/dcp2.c:1165] Setting ownership, permissions, and timestamps.
[2016-09-06T11:17:41] [0] [../../src/dcp2/dcp2.c:1505] Syncing updates to disk.
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:124] Started: Sep-06-2016,10:36:22
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:125] Completed: Sep-06-2016,11:17:41
[2016-09-06T11:17:41] [0] [../../src/dcp2/dcp2.c:126] Seconds: 2479.272
[2016-09-06T11:17:41] [0] [../../src/dcp2/dcp2.c:127] Items: 500556
[2016-09-06T11:17:41] [0] [../../src/dcp2/dcp2.c:128] Directories: 556
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:129] Files: 500000
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:130] Links: 0
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:132] Data: 47.676 TB (52420096819200 bytes)
[2016-09-06T11:17:41] [0] [../../../src/dcp2/dcp2.c:136] Rate: 19.691 GB/s (52420096819200 bytes in
2479.272 seconds)
```


Large Scale Test – dcp, 16 nodes

- OSS Activity

Source Filesystem: Gdata1 – 26.55GB/sec Read peak Destination Filesystem: Gdata3 – 19.39GB/sec Write peak

Large Scale Test – MDS activity

XLarge Scale Test (400T, 4 000 000 files)

XLarge Scale Test – dcp, 32 nodes

- 32 Nodes, 512 Processes
- 400T, 4 000 000 files copied
- 4 hours, 28 minutes.

```
[2016-09-09T17:22:15] [0] [../../../src/dcp2/handle args.c:297] Walking /g/data1/fu2/exampledata
2016-09-09T17:22:26: Items walked 876930 ...
2016-09-09T17:22:36: Items walked 2419596 ...
2016-09-09T17:22:46: Items walked 3931513 ...
[2016-09-09T17:22:47] [0] [../../.src/dcp2/dcp2.c:194] Creating directories.
 level=4 min=0 max=1 sum=1 rate=13.721943/sec secs=0.072876
 level=5 min=0 max=6 sum=9 rate=54.749891/sec secs=0.164384
 level=6 min=0 max=19 sum=50 rate=544.740274/sec secs=0.091787
 level=7 min=0 max=78 sum=400 rate=449.789867/sec secs=0.889304
 level=8 min=0 max=275 sum=4000 rate=1083.729755/sec secs=3.690957
 level=9 min=0 max=0 sum=0 rate=0.000000/sec secs=0.002009
[2016-09-09T17:22:52] [0] [../../src/dcp2/dcp2.c:363] Creating files.
 level=4 min=0 max=0 sum=0 rate=0.000000 secs=0.000183
 level=5 min=0 max=1 sum=1 rate=261.849419 secs=0.003819
 level=6 min=0 max=0 sum=0 rate=0.000000 secs=0.000055
 level=7 min=0 max=537 sum=10000 rate=2702.808733 secs=3.699855
 level=8 min=0 max=0 sum=0 rate=0.000000 secs=0.000235
 level=9 min=6711 max=25166 sum=4000000 rate=7930.196887 secs=504.401096
[2016-09-09T17:31:20] [0] [../../src/dcp2/dcp2.c:801] Copying data.
[2016-09-09T21:41:45] [0] [../../../src/dcp2/dcp2.c:1165] Setting ownership, permissions, and timestamps.
[2016-09-09T21:50:53] [0] [../../../src/dcp2/dcp2.c:1505] Syncing updates to disk.
[2016-09-09T21:50:54] [0] [../../../src/dcp2/dcp2.c:124] Started: Sep-09-2016,17:22:15
[2016-09-09T21:50:54] [0] [../../../src/dcp2/dcp2.c:125] Completed: Sep-09-2016,21:50:53
[2016-09-09T21:50:54] [0] [../../src/dcp2/dcp2.c:126] Seconds: 16118.851
[2016-09-09T21:50:54] [0] [../../src/dcp2/dcp2.c:127] Items: 4014461
[2016-09-09T21:50:54] [0] [../../.src/dcp2/dcp2.c:128] Directories: 4460
[2016-09-09T21:50:54] [0] [../../../src/dcp2/dcp2.c:129] Files: 4010001
[2010, 00, 0000, 1, E0, E4] [0] [ / / / and / dam 2 / dam 2 / and 1, 20] T_{m}
```


XLarge Scale Test – dcp, 32 nodes

- OSS Activity

Source Filesystem: Gdata1 – 28.51GB/sec Read peak Destination Filesystem: Gdata3 – 24.05GB/sec Write peak

XLarge Scale Test – MDS activity

Data from history. Generated in 0.46 s

- Results Comparison

Copy Time vs Data Copied

* Indicates additional tests not included in presentation for comparison purposes

NCI Approach to Data Migration

Data Migration Process

Data Migration Process

- NCI approach for a typical project level data migration

- Set Quota on Destination Filesystem
- Stop NFS exports for project directory being relocated
- Move project into restricted access source migration directory
 - Root only accessible directory with obvious name
 - drwx----- 5 root root 4096 Mar 10 02:53 migration_in_progress_g1_to_g3
 - mv /g/data1/projectID /g/data1/migration_in_progress_g1_to_g3
- Target directory is similarly configured root access only
- Break up project contents (usually on first level subdir) into smaller dcp runs
- Compare / Checksum source and destination
 - Build a list of all files in both source and dest using find with printf, Combine lists, awk | sed | sort. Diff output
 - Run fpart and feed NCI custom built MPImd5sum tool.
- Correct any mismatched files create a filelist with paths, split the list, use rsync.
 Typically none or very few files need re-sync.
- Move data out of restricted target directory on destination filesystem
- Re-establish NFS exports

- Data Migration in Practice - example

- September 2015
- 2.4PB Project, migrated from Gdata1 to Gdata3
- Duration includes all stages (Data Copy and Verify)
- Start: 1800 Tues 8 Sept 2015
- End: 1330 Thurs 10 Sept 2015
- Duration: 43h 30m
- Data Copied: 2473TB
- Items: 39255806 (39.26 Million)

- Encountered a bug in dcp2, fix committed upstream

	☐ GitHub, Inc. github.com/hpc/fileutils/pull/26 C	Ê 0 +			
	ersonal Open source Business Explore Pricing Blog Support This repository Se	earch Sign in Sign up			
⊑ hpc / ⇔ Cod	fileutils Issues 21 Image: Pull requests 0 Image: Wiki Image	atch 20 🛧 Star 23 😵 Fork 5			
Build the actual list of ranks to receive work from in dcp2 #26 Merged adammoody merged 1 commit into hpc:master from awellington:master on Sep 25, 2015 Proversation 1 • Commits 1 Priles changed 2 +14-4					
	Labels None yet Milestone				
	R Build the actual list of ranks to receive work from 80	No milestone He34e3 Assignees No one assigned			

HSM Integration

- If the data is part of a Lustre HSM system (dual state), how do we avoid re-writes on a shared tape system.
- If the data is migrating offline (tape resident), how do we avoid recalling all data from tape.
- Need to test both scenarios.

- Improve scalability of Validation Processes

• Test dcmp (distributed compare) as part of the fileutils.io suite

- Build dedicated Migration /Filesystem Load Test Cluster

- Gdata1 will be decommissioned late 2016 early 2017.
- Reuse 44x OSSes from gdata1 when decommissioned
- OSSes are Dell R620 Dual E5-2620, 6C, 2.0GHz, 256GB RAM, FDR Interconnect
- Rebuild as IO Load Test and Migration Cluster

Questions ?

Providing Australian researchers with world-class computing services

NCI Contacts

General enquiries: +61 2 6125 9800 Media enquiries: +61 2 6125 4389 Support: help@nci.org.au

Address:

NCI, Building 143, Ward Road The Australian National University Canberra ACT 2601 Australia

NCRIS National Research Infrastructure for Australia An Australian Government Initiative

Australian Research Council

nci.org.au

@NCInews

Extra Slides

FPsync slow ramp

- FPsync has a gradual (gentle) ramp. 16 node, 50T, 500 000 files
- Sunday evening, very little background IO. Fpsync achieving 5.5GB/sec.

- Large Scale Test dcp, 16 node, 400T, 4Mill. files BRW Sizes
- 1x OSS in Gdata1 is in heavy IO wait, all processes affected.

Zabbix event ID 960602: Wed 7 Sept 2016 - 00:38

Trigger: Disk I/O is overloaded on noss62-gige.lustre-gige.nci

Item values: CPU iowait time (noss62-gige.lustre-gige.nci:system.cpu.util[,iowait]): 67.66 %

– MCE / ECC Correctable errors

- High Correctable memory error count detected by system monitoring
- Occurred during September 2015 migration example
- Multi-petabyte migration separated into smaller dcp jobs to minimize impact of hardware failure.
- Node removed from service
- Affected job restarted to exclude node

```
compute r9: STATUS 8c000048000800c2 MCGSTATUS 0
compute r9: MCGCAP 1000c14 APICID 0 SOCKETID 0
compute r9: CPUID Vendor Intel Family 6 Model 45
compute r9: Hardware event. This is not a software error.
compute r9: MCE 4
compute r9: CPU 0 BANK 5
compute r9: MISC 21400e0e86 ADDR 17b81ad80
compute r9: TIME 1441704575 Tue Sep 8 19:29:35 2015
compute r9: MCG status:
compute r9: MCi status:
compute r9: MCi status:
compute r9: MCi_ADDR register valid
compute r9: MCA: MEMORY CONTROLLER RD_CHANNEL2_ERR
compute r9: Transaction: Memory read error
```