Enabling Research and Discovery

ISRCC

Stanford University srcc.stanford.edu

Research Computing
storage systems design

LUSTRE FEATURES AT WORK

Stéphane Thiell, Kilian Cavalotti, Ruth Marinshaw
Stanford Research Computing Center (SRCC)

LADIE

LUSTRE ADMINS
DEVS WORKSHOP

Stanford University

| —
PARlS 24,-26.09.18

Contents

» Site update: Stanford Research Computing Center (SRCC)

» DIY Lustre systems at the SRCC
» Oak vs Fir

» Lessons learned

= Lustre Features at work

= ZFS over Lustre

Stanford University

Sherlock: SRCC's shared computing cluster

= Support sponsored or departmental faculty research
» Condo cluster frequently growing

= 3,400 users representing 577 different faculty research groups
(as of September 2018)

= https://www.sherlock.stanford.edu/

New rack (Dell C6420)

Stanford University

https://www.sherlock.stanford.edu/

Sherlock: tech specs (as of September 2018)

= 1,317 nodes

= 23,756 CPU cores and 700 GPUs

» Two separate Infiniband fabrics: FDR and EDR
= More than 1.6 PFlops of computing power

= CentOS 7.5, Lustre client 2.10.5

Cluster size (nodes) vs. Date Dete / Cluster size (nodes)

@ Cluster size (nodes

8%
° .OQ.
..
| b
1000 .‘
[P
o
.00'.
(] ®
P00 (X1 1]
o0
‘....
‘ [B J
[]
Jan 2015 Jan 2016 Jan 2017 Jan 2018

Stanford University

SRCC’s new HPC storage portfolio

s : % " Oak longer term HPC filesystem (Lustre 2.10)

¥ = Mounted on Sherlock and XStream (Lustre) but

also accessible through other protocol/methods

W = Great for large streaming I/O

» Fir scratch HPC filesystem (targeting Lustre 2.12)
S2s » Mounted on Sherlock only
= Special feature: optimized for small file 1/O

* High bandwidth, great for large streaming I/O

Stanford University

SRCC HPC storage architecture (Q4 2018)

Scale-out

NAS storage

(7

ISILYON

e |B EDR
e |B FDR

e== FEthernet 10G

Regal
old scratch new scratch campaign storage

/ v 2
P
D

-
-
2
P

gateways
Desktops, laptops
and lab servers

Lustre Lustre Lustre

Stanford University

Oak “cheap & deep” storage: Two-Year Status Report

Oak’s architecture is unique and was originally presented at LAD’16

Full cost recovery after 4 years if >6PB (or 5.3PiB or 2 1/O racks)

= Growth beyond expectation with almost no publicity
» 4-year goal (6 PB usable) achieved in ~1.5 years!

2017-5 2017-7 20179 2017-11 2018-1 2018-3 2018-5 2018-7 20189
used - total — allocated

Stanford University

Introducing Fir, our next generation scratch filesystem

New parallel, scratch filesystem for our research community

= To answer the needs of diverse workloads

» Traditional HPC
» Long-tail of science / Deep Learning

» Sponsored (unlike Oak) but limited budget

= Working towards using common tooling, approaches, A\ //_
infrastructure building blocks (when possible) // \\

Stanford University

Oak vs Fir: MD cell

Dell MD3420 SAS HDD

SAS 12Gb/s
4-phy wide Dell MD3420 76TB SSD

= Pair of MDS Dell R630 (Intel)

Pair of MDS Dell R6415 (AMD EPYC)

» 10K SAS drives » 42 SSDs of 3.84TB each
» Infiniband FDR » Infiniband EDR

= DNE ready > New Broadcom SAS 9405W-16e tri-
» new MDT added every 6 PB mode HBA (4 x 48Gb/s)

(fixed inodes/volume ratio) = DNE and DoM ready
» 4 MDTs of 18TB

Stanford University

Fir: metadata subsystem design approach

Main idea

» Try to better handle small files using Data-on-MDT (DoM) and SSDs

MD cell design approach

1. Study file sizes from our old scratch “Regal” with Robinhood

2. Purchase and deploy an SSD-based MD cell based on previous sizing

and budget constraints

3. Enable DoM on new filesystem accordingly

Stanford University

Lustre Data-on-MDT (DoM)

Introduced in Lustre 2.11 and optimized in Lustre 2.12

The ideas behind Data-on-MDT
» Allow storing small files on MDTs
» Take advantage of flash storage often already available on MDTs

= Limit the number of small files stored on OSTs and network requests

Observations
» DoM itself doesn’t automatically improve performance
» Filesystems have fewer MDTs than OSTs

= Very easy to be fooled by benchmarks (esp. on idle filesystems)

Stanford University

Fir: metadata subsystem design approach (cont’'d)

1. Study file sizes from our old scratch “Regal” with Robinhood:
511M files, ~3PB

3% of files are empty (!)

44% of files are less than 4KB

69% of files are less than 64KB

76% of files are less than 128KB

91% of files are less than 1MB

VWV WV WV WYV WV

2. Purchase and deploy SSD-based disk arrays (budget constrained)
» 153TB of SSD (raw) or 72TB usable (RAID-10)
« 1TB reserved for 1B inodes (bytes-per-inode=66560)
« 71TB reserved for blocks (enough to store 595M x 128KB stripes)

3. Set DoM stripe size to 128KB (initially)
» ¥a of future scratch files expected to be stored on MDTs only!

Stanford University

Oak vs Fir: 1O racks
Frontend: 2 x IB FDR Frontend: 8 x IB EDR

. ——< 24 GBis
8-phy widemﬂ 24 GB/s
24 GB/s /7 J 24 GB/s
16 phys @ 12 Gb/s —
48 GB/s
48 GB/s 24 GB/s
24 GB/s
6 GB/s
4-phy wide

24 GB/s

24 GB/s

24 GB/s

24 GB/s

Stanford University

Fir: 10 cell details

» Balanced bandwidth vs. capacity with a focus on streaming |/O workload
» 2 x Dell R6415 AMD EPYC servers (mono socket 7401P)
»y 2x QCT JB4602 JBOD (SAS 12Gb/s)
» 120 x 8TB SAS drives

12.5 GB/s 12.5 GB/s

| DelPR64MS— peuelic ML & 7

1 QCT JB4602 60-disk JBOD # |
24 GB/s ‘ 13

e

“ QCT JB4602 60-disk JBOD

Stanford University

DIY Lustre systems: lessons learned

Pro’s

Cost of hardware

Flexibility in terms of system expansion

Full software stack control, with better upgrade management
Can deploy new Lustre features ahead of HPC storage vendors
Do not rely on a single vendor to troubleshoot issues

Good experiences with hardware vendors (firmware fixes)
Direct Lustre support on Oak has been super helpful

Con’s

Hardware sourcing issues

» Purchasing small quantity of units at a time sometimes leads to a long
lead time

» Switching to another hardware vendor is possible but never wanted in
practice

Stanford University

Lustre features at work

Lustre Changelogs with Robinhood

» Good experience with a two-node setup on Regal (old scratch)
» node #1: changelog reader with MySQL
> nhode #2: performing purges

= Single node setup on Oak and Fir (with newer hardware)

Distributed namespace (DNE)
= Currently testing DNE on Fir

= Not sure how to really use DNE phase Il in practice as performance impact
seems significant on small directories; also not user accessible?

= Lustre Documentation could be improved with some recommendations
(eqg. setdirstripe and Ifs mkdir -D are not documented)

Nodemap

= GID-only mapping in production on Oak with modified | _getidentity because
some users are not known by Oak [LU-10884]

= Secondary groups with different members are not always checked server-
side (inode cache issue) [LU-10884]

Stanford University

Lustre features at work (cont'd)

LNet routers
» Great flexibility with Sherlock’s multiple IB fabrics

= \We like to use Ictl add_route from time to time even if marked as
“‘obsolete (DANGEROUS)”

» |netctl with different IB settings used for Xstream

LFSCK
= Some tests done, planned but not using in production yet

Stanford University

ZFS over Lustre

What??

= ZFS on Linux 0.7.9 deployed over 1TB loop devices stored
in Lustre on Oak (Lustre 2.10). ‘

How?

= Each ZFS filesystem is running in a VM using SR-IOVs for Lustre
both IB FDR and Ethernet 10G (like all other Oak |
gateways)

= One VM is used per group.

» ZFS filesystems are then exported using NFSv4 and SMB
to various Stanford research labs

» Snapshots from an older ZFS on Linux system were
previously imported using zfs send/recv.

» Each ZFS filesystem can use different UID/GID and has no
inode quota limit unlike native Oak storage.

Stanford University

Questions?

Contact: sthiell@stanford.edu

Stanford University

Extra slides

Stanford University

Data-on-MDT (DoM) performance on Fir

= Untar of /dev/shm/linux-4.19-rc4.tar into Lustre

DoM/DNE default default default
dirstripe=1 dirstripe=2 dirstripe=4

DoM Disabled 96.7s 113s 108.9s
DoM 128kB 53.1s 74.7s 84.3s

» Small sequential writes: our DoM setup helps but DNEv2 doesn’t
» DoM helps even more if mdraid data-check is running on the OSTs

Config: Lustre 2.11.55 on CentOS 7.5 patchfull
Test client: Dell R7425 Dual AMD EPYC 7401 (96 threads) with 512GB RAM, 1 x IB EDR, no router
Other notes:

mdraid data-check limited to 25MB/s

freed pagecache, dentrie and inode caches on client and servers between all tests

Stanford University

Data-on-MDT (DoM) performance on Fir (cont'd)

» Kernel compilation: linux-4.19-rc4 (make -j 192)

DoM/DNE default
dirstripe=1

DoM Disabled 63m26s
DoM 128kB 33m35s

» 1.88x faster with DoM
» Reference time: 3m2s on /dev/shm

Config: Lustre 2.11.55 on CentOS 7.5 patchfull
Test client: Dell R7425 Dual AMD EPYC 7401 (96 threads) with 512GB RAM, 1 x IB EDR, no router
Other notes:

mdraid data-check limited to 25MB/s

freed pagecache, dentrie and inode caches on client and servers between all tests

Stanford University

Data-on-MDT with DNE: Small file random |I/Os with FIO

» Benchmark manyfiles-4k-random-read.fio
» all files precreated and then cache dropped on servers and client

1 MDT 2 MDTs 4 MDTs

Disabled 16,994 IOPS 16,515 10PS 16,584 IOPS
128kB 95,123 IOPS 106,928 IOPS 111,370 IOPS

manyfiles-4k-rw.fio
1 MDT 2 MDTs 4 MDTs

Disabled 6,379 IOPS 8,090 IOPS 8,365 IOPS
128kB 13,719 IOPS 30,620 IOPS 47,426 |IOPS

Stanford University

Data-on-MDT with DNE: Small file random |I/Os with FIO

» Benchmark manyfiles-4k-random-write.fio

1 MDT 2 MDTs 4 MDTs

Disabled 47,396 IOPS 107,965 IOPS 108,256 IOPS
128kB 27,645 I0PS 56,404 IOPS 110,529 IOPS

Stanford University

Data-on-MDT perf improvements: basic experiments

= |O-500 benchmark from a single client and single MDT

IOPS Phase DoM disabled DoM 128kB

mdtest _easy write

mdtest_hard_write
find

mdtest _easy_stat
mdtest_hard_stat
mdtest _easy delete
mdtest_hard read
mdtest_hard_delete

IOPS

23.747 kiops

3.744 Kkiops
429.420 kiops
18.448 kiops
7.046 kiops
22.334 kiops
18.387 kiops
4.856 kiops

17.7597 kiops

23.589 kiops

4.310 kiops
370.490 kiops
42.224 kiops
4.640 kiops
23.348 kiops
17.122 kiops
2.716 kiops

17.2969 kiops

Stanford University

Tools that we develop and use: sasutils

sasutils: Serial Attached SCSI (SAS) Linux utilities and Python library
= Display SAS fabric tree and provide aggregated view of devices

» sas_discover, sas_devices, sas_counters, ses_report

= Based on sysfs (and also sg3_utils and smp_ utils)

= Support SES Enclosure Nickname

= Available at https://github.com/stanford-rc/sasutils
= Made available in EPEL 7

$ sas_discover

oak-1i0l-sl

| --host19: board: SAS9300-8e 03-25656-02A SV53345573, product: LSISAS3008, bios: 04.00.00.00, fw: 12.00.00.00
| "---8x--expander-19:0 vendor: ASTEK, product: Switchl84, rev: 0004

| | ---1x--end_device-19:0:0 vendor: ASTEK, model: Switchl84, rev: 0004

| T ---4x--expander-19:1 vendor: QCT, product: JB4602 SIM @, rev: 1100

| | ---1x--end_device-19:1:10 vendor: SEAGATE, model: ST80QONMOQ7S5, rev: EQ02 size 8.0TB

| | ---1x--end_device-19:1:11 vendor: SEAGATE, model: ST80QONMOQ7S5, rev: EQ02 size 8.0TB

Stanford University

https://github.com/stanford-rc/sasutils

Tools that we develop and use: shine

shine: tool to setup and manage Lustre file system(s) on a cluster
Added hooks in shine to assemble/stop MD arrays on target start/stop.

Other shine-related work: High Availability without Pacemaker
» shine already has target failover support (master branch)
= develop a centralized Lustre supervisor with simple policy rules to
» check servers and possibly also some clients
» fence non-responsive server in case of a real issue
» trigger target failover using shine
» generate notifications (eg. Email, Slack)

= Shine is available at https://github.com/cea-hpc/shine

= Qur development branch is available at
https://github.com/stanford-rc/shine (oak ha branch)

Stanford University

https://github.com/cea-hpc/shine
https://github.com/stanford-rc/shine

Questions?

Contact: sthiell@stanford.edu

Stanford University

