
Research Computing
storage systems design

Stéphane Thiell, Kilian Cavalotti, Ruth Marinshaw

Stanford Research Computing Center (SRCC)

L U S T R E F E AT U R E S AT W O R K

Contents

§ Site update: Stanford Research Computing Center (SRCC)

§ DIY Lustre systems at the SRCC

› Oak vs Fir

› Lessons learned

§ Lustre Features at work

§ ZFS over Lustre

2

3

Sherlock: SRCC’s shared computing cluster

§ Support sponsored or departmental faculty research
§ Condo cluster frequently growing
§ 3,400 users representing 577 different faculty research groups

(as of September 2018)
§ https://www.sherlock.stanford.edu/

New rack (Dell C6420)

https://www.sherlock.stanford.edu/

4

Sherlock: tech specs (as of September 2018)

§ 1,317 nodes
§ 23,756 CPU cores and 700 GPUs
§ Two separate Infiniband fabrics: FDR and EDR
§ More than 1.6 PFlops of computing power
§ CentOS 7.5, Lustre client 2.10.5

5

SRCC’s new HPC storage portfolio

§ Fir scratch HPC filesystem (targeting Lustre 2.12)

§ Mounted on Sherlock only

§ Special feature: optimized for small file I/O

§ High bandwidth, great for large streaming I/O

20
18

+

§ Oak longer term HPC filesystem (Lustre 2.10)

§ Mounted on Sherlock and XStream (Lustre) but

also accessible through other protocol/methods

§ Great for large streaming I/O

20
17

+

SRCC HPC storage architecture (Q4 2018)

6

Sherlock

Scale-out
NAS storage

80 Gb/s80 Gb/s

!
campaign storage

Oak
20 Gb/s

gateways

Desktops, laptops
and lab servers

XStream

IB EDR
IB FDR

Ethernet 10G

new scratch

"
Fir

old scratch
Regal

LNET routers

Lustre LustreLustre

Oak “cheap & deep” storage: Two-Year Status Report

Oak’s architecture is unique and was originally presented at LAD’16

Full cost recovery after 4 years if >6PB (or 5.3PiB or 2 I/O racks)
§ Growth beyond expectation with almost no publicity
§ 4-year goal (6 PB usable) achieved in ~1.5 years!

7

Introducing Fir, our next generation scratch filesystem

New parallel, scratch filesystem for our research community

§ To answer the needs of diverse workloads

› Traditional HPC
› Long-tail of science / Deep Learning

§ Sponsored (unlike Oak) but limited budget

§ Working towards using common tooling, approaches,

infrastructure building blocks (when possible)

8

Oak vs Fir: MD cell

9

SAS 12Gb/s
4-phy wide

Dell R6415

Dell MD3420 76TB SSD

Dell R630

Dell MD3420 SAS HDD

FirOak

§ Pair of MDS Dell R6415 (AMD EPYC)
› 42 SSDs of 3.84TB each
› Infiniband EDR
› New Broadcom SAS 9405W-16e tri-

mode HBA (4 x 48Gb/s)
§ DNE and DoM ready

› 4 MDTs of 18TB

§ Pair of MDS Dell R630 (Intel)
› 10K SAS drives
› Infiniband FDR

§ DNE ready
› new MDT added every 6 PB

(fixed inodes/volume ratio)

Fir: metadata subsystem design approach

Main idea

§ Try to better handle small files using Data-on-MDT (DoM) and SSDs

MD cell design approach

1. Study file sizes from our old scratch “Regal” with Robinhood

2. Purchase and deploy an SSD-based MD cell based on previous sizing

and budget constraints

3. Enable DoM on new filesystem accordingly

10

Lustre Data-on-MDT (DoM)

Introduced in Lustre 2.11 and optimized in Lustre 2.12

The ideas behind Data-on-MDT

§ Allow storing small files on MDTs

§ Take advantage of flash storage often already available on MDTs

§ Limit the number of small files stored on OSTs and network requests

Observations

§ DoM itself doesn’t automatically improve performance

§ Filesystems have fewer MDTs than OSTs

§ Very easy to be fooled by benchmarks (esp. on idle filesystems)

11

Fir: metadata subsystem design approach (cont’d)

1. Study file sizes from our old scratch “Regal” with Robinhood:
› 511M files, ~3PB
› 3% of files are empty (!)
› 44% of files are less than 4KB
› 69% of files are less than 64KB
› 76% of files are less than 128KB
› 91% of files are less than 1MB

2. Purchase and deploy SSD-based disk arrays (budget constrained)
› 153TB of SSD (raw) or 72TB usable (RAID-10)

• 1TB reserved for 1B inodes (bytes-per-inode=66560)
• 71TB reserved for blocks (enough to store 595M x 128KB stripes)

3. Set DoM stripe size to 128KB (initially)
› ¾ of future scratch files expected to be stored on MDTs only!

12

24 GB/s
16 phys @ 12 Gb/s

24 GB/s

6 GB/s
4-phy wide

48 GB/s

48 GB/s

8-phy wide 24 GB/s

24 GB/s

24 GB/s

24 GB/s

24 GB/s

24 GB/s

24 GB/s

24 GB/s

Oak vs Fir: IO racks

13

Frontend: 2 x IB FDR Frontend: 8 x IB EDR

Oak Fir

§ Balanced bandwidth vs. capacity with a focus on streaming I/O workload
› 2 x Dell R6415 AMD EPYC servers (mono socket 7401P)
› 2 x QCT JB4602 JBOD (SAS 12Gb/s)
› 120 x 8TB SAS drives

Fir: IO cell details

14

24 GB/s

24 GB/s

12.5 GB/s12.5 GB/s

QCT JB4602 60-disk JBOD

QCT JB4602 60-disk JBOD

Dell R6415

Dell R6415

DIY Lustre systems: lessons learned

Pro’s

§ Cost of hardware

§ Flexibility in terms of system expansion

§ Full software stack control, with better upgrade management

§ Can deploy new Lustre features ahead of HPC storage vendors

§ Do not rely on a single vendor to troubleshoot issues

§ Good experiences with hardware vendors (firmware fixes)

§ Direct Lustre support on Oak has been super helpful

Con’s

§ Hardware sourcing issues

› Purchasing small quantity of units at a time sometimes leads to a long
lead time

› Switching to another hardware vendor is possible but never wanted in
practice

15

Lustre features at work

Lustre Changelogs with Robinhood
§ Good experience with a two-node setup on Regal (old scratch)

› node #1: changelog reader with MySQL
› node #2: performing purges

§ Single node setup on Oak and Fir (with newer hardware)

Distributed namespace (DNE)
§ Currently testing DNE on Fir
§ Not sure how to really use DNE phase II in practice as performance impact

seems significant on small directories; also not user accessible?
§ Lustre Documentation could be improved with some recommendations

(eg. setdirstripe and lfs mkdir -D are not documented)

Nodemap
§ GID-only mapping in production on Oak with modified l_getidentity because

some users are not known by Oak [LU-10884]
§ Secondary groups with different members are not always checked server-

side (inode cache issue) [LU-10884]

16

Lustre features at work (cont’d)

LNet routers

§ Great flexibility with Sherlock’s multiple IB fabrics

§ We like to use lctl add_route from time to time even if marked as

“obsolete (DANGEROUS)”

§ lnetctl with different IB settings used for Xstream

LFSCK

§ Some tests done, planned but not using in production yet

17

ZFS over Lustre

What??
§ ZFS on Linux 0.7.9 deployed over 1TB loop devices stored

in Lustre on Oak (Lustre 2.10).

How?
§ Each ZFS filesystem is running in a VM using SR-IOVs for

both IB FDR and Ethernet 10G (like all other Oak
gateways)

§ One VM is used per group.
§ ZFS filesystems are then exported using NFSv4 and SMB

to various Stanford research labs
§ Snapshots from an older ZFS on Linux system were

previously imported using zfs send/recv.
§ Each ZFS filesystem can use different UID/GID and has no

inode quota limit unlike native Oak storage.

18

ZFS

Lustre
client

NFS SMB

!

clients

loop devices

19

Questions?

Contact: sthiell@stanford.edu

20

Extra slides

Data-on-MDT (DoM) performance on Fir
§ Untar of /dev/shm/linux-4.19-rc4.tar into Lustre

› Small sequential writes: our DoM setup helps but DNEv2 doesn’t
› DoM helps even more if mdraid data-check is running on the OSTs

21

Config: Lustre 2.11.55 on CentOS 7.5 patchfull
Test client: Dell R7425 Dual AMD EPYC 7401 (96 threads) with 512GB RAM, 1 x IB EDR, no router
Other notes:
- mdraid data-check limited to 25MB/s
- freed pagecache, dentrie and inode caches on client and servers between all tests

DoM/DNE default
dirstripe=1

default
dirstripe=2

default
dirstripe=4

DoM Disabled 96.7s 113s 108.9s

DoM 128kB 53.1s 74.7s 84.3s

Data-on-MDT (DoM) performance on Fir (cont’d)
§ Kernel compilation: linux-4.19-rc4 (make -j 192)

› 1.88x faster with DoM
› Reference time: 3m2s on /dev/shm

22

Config: Lustre 2.11.55 on CentOS 7.5 patchfull
Test client: Dell R7425 Dual AMD EPYC 7401 (96 threads) with 512GB RAM, 1 x IB EDR, no router
Other notes:
- mdraid data-check limited to 25MB/s
- freed pagecache, dentrie and inode caches on client and servers between all tests

DoM/DNE default
dirstripe=1

DoM Disabled 63m26s

DoM 128kB 33m35s

Data-on-MDT with DNE: Small file random I/Os with FIO

§ Benchmark manyfiles-4k-random-read.fio
› all files precreated and then cache dropped on servers and client

manyfiles-4k-rw.fio

23

DoM? 1 MDT 2 MDTs 4 MDTs
Disabled 16,994 IOPS 16,515 IOPS 16,584 IOPS

128kB 95,123 IOPS 106,928 IOPS 111,370 IOPS

DoM? 1 MDT 2 MDTs 4 MDTs
Disabled 6,379 IOPS 8,090 IOPS 8,365 IOPS

128kB 13,719 IOPS 30,620 IOPS 47,426 IOPS

Data-on-MDT with DNE: Small file random I/Os with FIO

§ Benchmark manyfiles-4k-random-write.fio

24

DoM? 1 MDT 2 MDTs 4 MDTs
Disabled 47,396 IOPS 107,965 IOPS 108,256 IOPS

128kB 27,645 IOPS 56,404 IOPS 110,529 IOPS

Data-on-MDT perf improvements: basic experiments

§ IO-500 benchmark from a single client and single MDT

25

IOPS Phase DoM disabled DoM 128kB
mdtest_easy_write 23.747 kiops 23.589 kiops

mdtest_hard_write 3.744 kiops 4.310 kiops
find 429.420 kiops 370.490 kiops
mdtest_easy_stat 18.448 kiops 42.224 kiops
mdtest_hard_stat 7.046 kiops 4.640 kiops
mdtest_easy_delete 22.334 kiops 23.348 kiops
mdtest_hard_read 18.387 kiops 17.122 kiops
mdtest_hard_delete 4.856 kiops 2.716 kiops

IOPS 17.7597 kiops 17.2969 kiops

Tools that we develop and use: sasutils
sasutils: Serial Attached SCSI (SAS) Linux utilities and Python library
§ Display SAS fabric tree and provide aggregated view of devices
§ sas_discover, sas_devices, sas_counters, ses_report
§ Based on sysfs (and also sg3_utils and smp_utils)
§ Support SES Enclosure Nickname

§ Available at https://github.com/stanford-rc/sasutils
§ Made available in EPEL 7

26

$ sas_discover
oak-io1-s1
|--host19: board: SAS9300-8e 03-25656-02A SV53345573, product: LSISAS3008, bios: 04.00.00.00, fw: 12.00.00.00
| `---8x--expander-19:0 vendor: ASTEK, product: Switch184, rev: 0004
| |---1x--end_device-19:0:0 vendor: ASTEK, model: Switch184, rev: 0004
| `---4x--expander-19:1 vendor: QCT, product: JB4602 SIM 0, rev: 1100
| |---1x--end_device-19:1:10 vendor: SEAGATE, model: ST8000NM0075, rev: E002 size 8.0TB
| |---1x--end_device-19:1:11 vendor: SEAGATE, model: ST8000NM0075, rev: E002 size 8.0TB
...

https://github.com/stanford-rc/sasutils

Tools that we develop and use: shine
shine: tool to setup and manage Lustre file system(s) on a cluster

Added hooks in shine to assemble/stop MD arrays on target start/stop.

Other shine-related work: High Availability without Pacemaker
§ shine already has target failover support (master branch)
§ develop a centralized Lustre supervisor with simple policy rules to

› check servers and possibly also some clients
› fence non-responsive server in case of a real issue
› trigger target failover using shine
› generate notifications (eg. Email, Slack)

§ Shine is available at https://github.com/cea-hpc/shine
§ Our development branch is available at

https://github.com/stanford-rc/shine (oak_ha branch)

27

https://github.com/cea-hpc/shine
https://github.com/stanford-rc/shine

28

Questions?

Contact: sthiell@stanford.edu

