
09/2019

Lustre Client Encryption
sbuisson@whamcloud.com



whamcloud.com

Lustre Client Encryption

►What is encryption for Lustre?
►Recap of last year’s approach
►Alternative approach: fscrypt
►Current development status
►Remaining work



whamcloud.com

What is encryption for Lustre?

►Use case:
• Provide special directory for each user, to safely store sensitive files

►Goals:
• Protect data in transit between clients and servers
• Protect data at rest



whamcloud.com

Last year recap: encryption on top of Lustre with Gocryptfs

►Gocryptfs stacked file system, 
written in GO, user space: FUSE

►Mount gocryptfs on top of Lustre
client
• Provides file content and 

file/directory name encryption
►Pros: immediately available and 

simple to implement
►Cons: performance penalty



whamcloud.com

Alternative approach: Lustre client encryption

►Implement encryption directly at the Lustre client level

►Requirements
• Encrypt file content
• Encrypt file/directory name
•Have a master key for encryption
oPer-file encryption key derived from master key
• File data is no longer accessible after file is deleted (secure deletion)
• End users provide their own encryption keys, and decide on dirs to encrypt
•Deny access to encrypted data when master key is removed from memory
•Able to change the user key without re-encrypting files
•Access encrypted files from applications launched by a batch scheduler



whamcloud.com

Lustre Client Encryption – solution proposal

►Conform to fscrypt kernel API
• Current users are ext4, F2FS, and UBIFS

•Mature in 4.14 kernel

•Usable implementation in Ubuntu 18.04 and RHEL8

►Reuse ext4 encryption principles
• Encryption chunk size = system page size

• encrypted page size = clear text page size

• Encryption chunks are independent from each other

• Pages in the page cache always contain clear text data



whamcloud.com

Lustre Client Encryption – solution proposal - continued

►Make use of fscrypt userspace tool
•Manage encryption policies
Þ Tell which directories to encrypt, and how
•Need to use v2 encryption policies

►Ideally, share code infrastructure with client-side compression work
• Same kind of operations, at same code locations



whamcloud.com

Lustre client encryption – addressing the requirements

fscrypt kernel API

fscrypt userspace tool

• Encrypt file content
• Encrypt file/directory name
•Have a master key for encryption
oPer-file encryption key derived from master key

• File data is no longer accessible after file is deleted (secure deletion)
• End users provide their own encryption keys, and decide on dirs to encrypt
•Deny access to encrypted data when master key is removed from memory
•Able to change the user key without re-encrypting files
•Work in “batch scheduler” mode



whamcloud.com

Lustre Client Encryption – data workflow

►Applications see clear text
►Data is encrypted before being sent to servers
• Then remains untouched

►Data is decrypted upon receipt from servers
•Untouched before that

►Servers only see encrypted data
• But do not need to be aware of it

►Only client nodes have access to encryption keys



whamcloud.com

Lustre Client Encryption – write case

Lustre
Client

Lustre
Server Storage 

Backend

encrypt page

Application

write page

write rpc with enc’d page

write enc’d block

Lustre
Mount Point

write file at offset

clear text

encrypted



whamcloud.com

Lustre Client Encryption – read case

Lustre
Client

Lustre
Server Storage 

Backend

decrypt page

Application

read page

read rpc for page

read corresponding block

Lustre
Mount Point

read file at offset

enc’d blockrpc with enc’d page

page

file content at offset
clear text

encrypted



whamcloud.com

Lustre Client Encryption – threat model (details in LU-12275)

►Offline attacks
• File contents and file names are protected
oConfidentiality and integrity guaranteed if underlying encryption mechanism 

provides them

• File metadata is not protected
oe.g. file sizes, file permissions, file timestamps, and extended attributes

• Existence and location of holes in files is not protected

https://jira.whamcloud.com/browse/LU-12275


whamcloud.com

Lustre Client Encryption – threat model - continued

►Online attacks
•Vulnerable if the Linux Cryptographic API algorithms are…

• Clear text file contents or filenames not hidden from other users on same 
client

oUNIX rights, POSIX ACLs, or namespaces are here for that!

• Lustre client kernel memory compromise can lead to encryption key 
compromise
oKeys should be explicitly removed from memory after use

• Lustre server kernel memory compromise has no effect

• Per-file key compromise only impacts the associated file, not the master key



whamcloud.com

Lustre Client Encryption – development in progress

►Proof Of Concept quality code

►5 patches pushed under LU-12275:
• Common framework for flags, get/set encryption context
o dummy encryption mode (fixed encryption key)

• Implementation of encryption of file data on write path
• Implementation of decryption of file data on read path
• Proper file size handling
•Non-regression tests to exercise encryption code

https://jira.whamcloud.com/browse/LU-12275


whamcloud.com

Lustre Client Encryption – Lustre subtleties

►Proper file size handling
• Encryption chunk size is the page size
• Ciphertext page is always full of data… even if clear text only contains one 

byte
• But OSS assumes object size based on length of data received
oMust carry on clear text length from client to server, and store along with object

►Checksum on request content
• Client page cache contains clear text data
• But ciphertext is sent to servers
oMust not use pages in client cache for checksum calculation



whamcloud.com

Lustre Client Encryption – performance evaluation

►POC code on top of master, dummy encryption mode (AES-256-XTS)
►Testbed
• Client
oSkylake 48 cores, Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
o96 GB RAM
oConnectX-4 Infiniband adapter, EDR network

• Storage
oDDN ES200NV, 20 x NVMe HGST 1,7TB, 1 DCR pool
o4 OSTs, each 1/10th of pool

►Methodology
• IOR, file per process, sequential IO
• IOR, file per process, random IO



whamcloud.com

Lustre Client Encryption – early performance evaluation



whamcloud.com

Lustre Client Encryption – early performance evaluation



whamcloud.com

Lustre Client Encryption – early performance evaluation



whamcloud.com

Lustre Client Encryption – early performance evaluation



whamcloud.com

Lustre Client Encryption – early performance evaluation



whamcloud.com

Lustre Client Encryption – early performance evaluation



whamcloud.com

Lustre Client Encryption – remaining development

►Encryption of file, symlink and directory names
•Measure metadata performance impact

►Ability to set encryption policies on directories
• Support new IOCTLs from fscrypt userspace tool

►Lustre specific optimizations: eg encryption context
• Per-file encryption context is stored in an xattr
•Getting/setting xattrs impacts performance by generating additional requests
• Lustre must be able to
oSet encryption context directly with create request
oFetch encryption context directly with open/lookup request



whamcloud.com

Lustre Client Encryption – challenges

►Distributed Namespace (DNE)
Þ Impact on file name encryption?

►File Level Redundancy (FLR)
►Data-on-MDT (DoM)
►File migration
►Request replay
Þ Impact on file content encryption?

►More generally, the goal is for the performance penalty to only be the 
time spent on encryption and decryption.



whamcloud.com

Conclusion

►This is just early stage of evaluation
• Remaining development
•Necessary optimizations
•Metadata performance evaluation

►Encouraging bandwidth performance level
•Good replacement for “Gocryptfs on top of Lustre” solution

►Advantage of simplicity once done
•At the cost of development effort

►Key management is closely-related hot topic



sbuisson@whamcloud.com

Thank you!


