
Shuichi Ihara

Empowering Lustre Performance Evolution through IO500

whamcloud.com

IO Benchmark and IO500

►Understanding IO performance of storage systems
• IO Benchmark is one of critical storage requirements
• Standardized tests and performance comparisons are also important
o e.g. old systems vs new systems, different hardware configurations, etc

► IO500 - https://io500.org/
• A standard IO Benchmark suite for HPC
o Easy to use, assesses IO bandwidth, metadata ops, and search performance
o Includes "Easy" (Hero) and "Hard" (Anti-Hero) tests
o Comprehensive evaluation, no single performance criterion
• Publication
o Results shared in ranking lists and started at SC17 in Nov 2017
oUpdates biannually, like other xxx500 lists
o Categories: "Production" "Research" "Full” and "10 Client"
oAccepts submissions from various environments (Production, Test system, on-premise, Cloud, etc.)

https://io500.org/

whamcloud.com

IO500

►Benchmark components
• IOR (Write and Read)
o Easy : FPP (File per process), various IO size allowed
oHard : Shared file, Interleaved, Fixed IO size (47,008 bytes)
• mdtest (write, stat, read* and delete)
o Easy : Individual directories, zero byte files
oHard : Shared Directory, small files (3,901 bytes)

• Find
o Search 3,901-byte files from all created files and print total count
o External tools allowed

►Other Rules
• Writes must be longer than 5 minutes and stored on persistent devices
• Avoid client caches (e.g. Stride MPI ranks in next operations. "-C -Q 1” for IOR)

Geometric mean
B/W Score

Geometric mean
Metadata Score

Geometric mean
Final Score

*read in mdtest runs only for mdtest-hard

whamcloud.com

Leveraging IO500

►Consistent and historical benchmark
• Performance regression tests
• Identifying performance challenges and demonstrating performance improvements

►Enhancing performance efficiency
• Achieving high I/O performance with small hardware resources
oMaximize I/O performance by 10 clients
oNot only HPC, but also for AI/ML - A large GPU node (e.g. 8 x GPU, 2 x 400Gbps network)

► Exploring I/O Performance through IO500
• Identifying bottlenecks in both Lustre and I/O subsystem overall
• Adapting to real performance challenges in the production system
• Improve I/O traceability
• Refer useful mdtest and ior command for your storage requirements
o “mdtest -u” (cached) and “mdtest -u -N 1” (non-cached) in IO500 are totally different workload

whamcloud.com

Our Sustained performance enhancements

Pre-SC19 SC19 ISC20 ISC22 SC22 ISC23 ISC23/PreSC19
IOR Easy Write 25.88 28.62 37.56 55.95 58.07 57.88 2.2x
IOR Easy Read 39.94 41.72 45.95 83.86 77.56 79.08 2.0x
IOR Hard Write 2.78 2.96 2.77 5.02 5.27 5.38 2.0x
IOR Hard Read 8.99 42.19 40.81 39.73 49.36 50.77 5.6x
Find 1,735.41 810 1,698.00 6,248.55 12628.78 13,229.11 7.6x
Mdtest Easy Write 143.88 152.84 157.22 270.04 312.9 344.70 2.3x
Mdtest Easy Stat 455.03 451.97 453.51 740.01 1,278.50 1,276.31 2.8x
Mdtest Easy Delete 88.52 132.76 135.09 223.61 272.64 311.16 3.5x
Mdtest Hard Write 32.33 79.65 90.47 119.41 157.4 199.36 6.1x
Mdtest hard Read 44.92 172.59 169 194.33 238.82 391.09 8.7x
Mdtest Hard Stat 20.41 449.93 446.75 514.36 1,214.03 1,105.33 54.1x
Mdtest Hard Delete 16.35 75.15 76.94 101.98 122.44 112.58 6.8x
Bandwdith 12.68 19.65 21.02 31.10 32.90 33.43 2.6x
IOPS 91.41 207.62 232.69 368.48 544.23 603.39 6.6x
Score 34.05 63.87 69.93 107.05 133.81 142.03 4.1x

Storage Platform ES400NV ES400NVX ES400NVX2
8 x CPU/node 12 x CPU/node (1.5x)
1 x EDR/node 1 x HDR200/node(2x)
PCIGen3 NVMe PCIGen4 NVMe (2x)

https://io500.org/submissions/view/657

Performance improvements
go beyond what hardware
upgrades can achieve

10 x Client
1 x CPU, 96GB RAM
1 x HDR100

https://io500.org/submissions/view/657%E2%80%8B

whamcloud.com

Successful Lustre Performance Improvement cycle

Performance
Measurements

Identifying
Performance Bottlenecks

Solution
Demonstration

Productization

• Run IO500
• Understanding system and Lustre behaviors
• Minimized reproducer

• Lustre limitations and others
• Bottleneck was hidden, but now exposed
• Certain areas were relatively unexplored

• Prototype proposal to address
a performance challenge

• Re-run IO500 on 10 nodes
• New performance demonstration

• Full regression tests
• Review and merge patches
• Enable at large production

systems and tunning if needed

whamcloud.com

OST1OST0 OST2 OST3

Lustre OverStripe (Lustre-2.13)

lfs setstripe -c 4 /lustre/file (Lustre Regular Stripe)
lfs setstripe -C 8 /lustre/file (OverStripe)

S0

P0 P1 P2 P3 P4 P5 P6 P7

1M 1M 1M 1M 1M 1M 1M 1M
shared file

S4 S1 S5 S2 S6 S3 S7

obj0 obj4 obj1 obj5 obj2 obj6 obj3 obj7

OverStripe

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 512

TH
ro

ug
hp

ut
 (M

B/
se

c)

StripeCount

Stripe vs OverStripe

Write

Read

1MB single shared file
ior -w -r -C -g -i 3 -vv -s 13000 -b 1m -t 1m -a POSIX –e
ES7990(160 x HDD, 2 x OSS, 8 x OST), 32 clients

Does not solve ior-hard-write completely, but offers
a significant performance improvement for a single shared file

Conflicts

whamcloud.com

Improvements of Lustre ReadAhead (Lustre-2.14)

►Accurate detection of I/O patterns
• Readahead has been working well for sequential reads.
• Support new IO pattern ”Stride Read” for a single shared file

►Changed page based index to bytes offset
• Support unaligned page (e.g. 47008 byte in ior-hard-read)
• Avoid many small page RPCs and readahead windows reset
o Improve readahead cache hit rate

P0 P1 P2 P3

P0 P1 P2 P3

File

Stride Read

Sequential Read

File

whamcloud.com

Performance comparisons of Lustre-2.13 and lustre-2.14

Readahead stats for ior-hard-read
Lustre-2.13
lctl get_param llite.*.read_ahead_stats
llite.exafs-ffff9b96c1349800.read_ahead_stats=
hits 3340631 samples [pages]
misses 32901120 samples [pages]

Readahed Cache Hit rate: 9%

Lustre-2.14
llite.exafs-ffff9b96b8117000.read_ahead_stats=
hits 33616605 samples [pages]
misses 4444696 samples [pages]

Readahed Cache Hit rate: 88%
0

10

20

30

40

50

60

70

80

90

IOR Easy Read IOR Hard Read

Ba
nd

w
id

th
 (G

B/
se

c)

IO500 IOR Easy/Hard Workloads(32 client, 512 Process)

lustre-2.13.0

lustre-2.14.0

12x speedup

Prefetched data by readahead hits expected next read

whamcloud.com

Lustre Batched RPCs for Statahead (Lustre-2.16)

MDT MDS Client

readdir()
stat()
stat()
stat()
stat()
…

MDT MDS Client

readdir()
“stat()-stat()-stat()...”
“stat()-stat()-stat()...”

Aggregate multiple getattr RPCs and send
them as a batched large request to severs

Network latency can be
significantly affected by the
number of getattr calls

Batched statahead

Traditional statahead

0

200

400

600

800

1000

1200

1400

1600

Mdtest Easy Stat Mdtest Hard Stat

O
PS

mdtest-{easy,hard}-stat

Before Batched Statahead
After Batched Statahead

whamcloud.com

Additional Lustre Performance Enhancements

►Automated MDT usage/space balancing (Lustre-2.14/Lustre-2.15)
• Each unique sub directory can be automatically assigned to an MDT and avoiding striped directory

►Metadata OverStriping (LU-12273)
• Similar concept to OST OverStripe, but it allows MDT stripe counts > MDTs

https://jira.whamcloud.com/browse/LU-12273

whamcloud.com

Other Tips of Performance Improvements for IO500

►Developed an external tool for metadata scan/search
• Alternative tool to “lfs find”, “find” and “pfind” that allows for scanning MDT directly

without relying on Lustre clients
• 7x performance improvements compared to “pfind”

► Linux kernel for Lustre server
• Upgrading from RHEL7.x to RHEL8.x servers improved metadata performance by 25-30%

► Linux kernel for Lustre client
• VFS Parallel Lookup (Supported since kenrel-4.7) speeds up stat() operation

for a shared directory (mdtest-hard-stat)
• There are still performance limitations with parallel modifications to a shared directory through VFS
oNeil Brown submitted a proposal to the upstream kernel “VFS: Support Parallel Updates in a Single Directory”
oUsing multiple mountpoints in containers from Lustre client is a workaround

– Commonly used in HPC/Cloud today to run multiple jobs on a single compute/GPU node

whamcloud.com

Multiple mount points on Lustre client

► Lustre allows multiple mount points against a single Lustre filesystem
• Many use cases are exists (security, sub directory mounts, high performance GPU client)
• Some Lustre parameters need to be adjusted

►Enables multiple mount points for IO500
• Mount Lustre on different mount points
o e.g. /mnt/lustre_0, /mnt/lustre_1, /mnt/lustre_2, …
• Configure singularity with multiple mount points for MPI
io500_mpirun="mpirun”
io500_mpiargs="singularity.sh -B /usr/mpi -B /usr/lib64
-B /sys/class/infiniband_verbs -B /bin -B /sbin
-B /etc centos8.sif”

#/bin/sh
singularity.sh
MNT_ID=$((OMPI_COMM_WORLD_RANK % 8))
singularity exec --bind /mnt/lustre_${MNT_ID}:/mnt/lustre $*

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 4 8

O
PS

NP(Number of Process)

mdtest-hard-write
NN=1
NN=NP
NN=1, multiple mount

Note scaling

5x

whamcloud.com

Summary

► Lustre performance has been proven on large production HPC systems at numerous sites
• IO500 is an example benchmark metric, but it's not the only one
• In addition to performance, high RAS capability are necessary in large-scale HPC systems
• On the other hand, IO500 opened an door for new Lustre performance evolutions in HPC/AI and more

►What’s next?
• Multiple efforts are underway to investigate for unaligned IO (ior-hard-write) performance

improvements
oDIO support for unaligned IO
o Enabling delayed allocation in osd-ldiskfs
• Cross-file Readahead
o Expect mdtest-hard-read performance boosts
o It also helps many small file read workload

• Consider upgrading the Linux kernel for servers (e.g. RHEL9)

Stay tuned!

