
Lustre* 2.9 and Beyond
Andreas Dilger, High Performance Data Division

* Some names and brands may be claimed as the property of others



Features completed for 2.8
• LFSCK Phase 4 - Performance Improvements (Intel, OpenSFS)

• DNE Phase 2 Striped Directories - Asynchronous Commits (Intel, OpenSFS)

• Client IO Simplification (Intel, OpenSFS)

• Multiple metadata-modifying RPCs (multi-slot last_rcvd) (Bull=Atos)

• Kerberos/GSS revival (Bull=Atos, Seagate)

Features starting development for 2.9 and later
• UID/GID mapping (IU)

• ZFS* Enhancements (Intel, LLNL)

• Project quotas (DDN)

• Shared-key/GSS crypto (IU)

• Progressive File Layout Prototype (Intel & ORNL)

• Data on MDT Prototype (Intel)

Overview of Features

2LAD 2015 9/16/2015



Changes for ZFS OSD (2.9)

• 1MB+ ZFS blocksize (IO performance, LLNL)

• Read IO optimization (IO performance, Intel)

• ZIL support for fast sync (IO & metadata performance, Intel)

Changes to core ZFS code (2.9+)

• Inode quota accounting (base functionality, Intel)

• Large dnodes (metadata performance, LLNL)

• Parity declustering (reliability & availability, Intel)

• Distributed hot spares (reliability & availability, Intel)

ZFS Enhancements (Intel/LLNL, 2.9+)

LAD 2015 39/16/2015



Code cleanups (Cray*/Intel®/ORNL)

• Update to match upstream kernel coding style

• Port patches to/from upstream kernel

• Clean up and/or eliminate server kernel/ldiskfs patches

Project Quotas (DDN*)

• Allow quota tracking on directory subtrees independent of UID/GID

• Not strictly hierarchical, can be multiple trees with the same project

Network Authentication and Encryption (Bull*/IU*/Seagate*)

• Kerberos user/node authentication, RPC encryption

• Shared Secret Key node authentication, RPC encryption

Miscellaneous features

LAD 2015 49/16/2015



Efficiently store small files on the MDT(s)

• Avoid OST BRW RPC + disk seek + OST lock for each file access

• Use small-file optimized MDT storage (RAID-10/SSD/NVRAM)

• Avoid RAID-5/6 read-modify-write for small writes

Space usage on MDT(s) managed by quota

Small files are determined by the file layout

• Maximum MDT file size can be specified by min(user, admin)

• Typically expected to be <= 1MB, dependent on MDT space

Complementary with DNE 2 striped directories

• Scale small file IOPS horizontally with multiple MDTs

Data on MDT (Intel, 2.10+)

LAD 2015 59/16/2015



DoM layout chosen at file creation time like files on OSTs

• Can't do it after write because objects are allocated at open()

• Default DoM striping on subdirectories inherited by newly created files

http://cdn.opensfs.org/wp-content/uploads/2014/04/D1_S10_LustreFeatureDetails_Pershin.pdf

http://wiki.opensfs.org/images/b/be/DataonMDSDesign_HighLevelDesign.pdf

Data on MDT Implementation (Intel, 2.10+)

LAD 2015 6

Without DoM

Client MDS

OSS
OSS

OSS

open(O_RDWR|O_TRUNC), 
stat(), truncate()

truncate, enqueue, 
write

lock, read, 
attributes

Client MDS

OSS
OSS

OSS

open(O_RDWR|O_TRUNC), 
stat(), truncate()

layout, lock, 
attributes, read

With DoM

layout, attributes

9/16/2015

http://cdn.opensfs.org/wp-content/uploads/2014/04/D1_S10_LustreFeatureDetails_Pershin.pdf
http://wiki.opensfs.org/images/b/be/DataonMDSDesign_HighLevelDesign.pdf


Add Composite Layouts for regular files

• Allow describing more complex file structures and interactions

• A composite layout contains multiple components (LOV_MAGIC_V[13])

• Composite layouts do not restrict components themselves

• Specific features may impose their own restrictions

struct lov_comp_md_v1 {

__u32 lcm_magic; /* LCM_MAGIC_V1 */

__u32 lcm_size; /* overall size including this struct */

__u32 lcm_layout_gen; /* incremented each time layout changes */

__u16 lcm_flags; /* LCM_FL_RS_READ_ONLY, LCM_FL_RS_SYNC_PENDING, ... */

__u16 lcm_entry_count; /* number of components in lcm_entries[] */

__u64 lcm_padding[2];

struct lov_comp_md_entry_v1 lcm_entries[];

};

Composite Layouts (Intel, 2.10)

LAD 2015 79/16/2015



• A Component describes one extent of a composite file

• Each component is a separate plain layout within a file

• Currently LOV_MAGIC_V[13] (RAID-0) layouts are handled

• Other layout patterns can be added in the future (LOV_MAGIC_DOM, ...)

• Components cannot be nested

• Objects are not shared between components

struct lov_comp_md_entry_v1 {

__u32 lcme_id; /* unique identifier of component within composite */

__u32 lcme_flags; /* LCME_FL_STALE, LCME_FL_PRIMARY, LCME_FL_PREFERRED */

struct lu_extent lcme_extent; /* file logical extent for component */

__u32 lcme_offset; /* offset of component layout from start of composite */

__u32 lcme_size; /* size of component layout data in bytes */

__u64 lcme_padding;

};

Composite Layout Components

LAD 2015 89/16/2015



Progressive File Layouts
• Non-overlapping component layouts for different parts of the file

• Increasing stripe count as file grows larger is expected, but not required

File Level Replication
• Overlapping component layouts provide redundancy

• Replica components can be marked stale or offline if OST failure is detected

• Resync stale components when OST online or add new replicas for failed OSTs

File versioning
• Replica components that are not updated by later writes or resync'd

• Old versions could be accessed via lfs or via ioctl() on open file descriptor

HSMv2 partial file restore
• One component for each archive copy, along with a timestamp/version for age

• Regular file component(s) for online data, may not cover whole file

What can be done with Composite Layouts?

9/16/2015 9LAD 2015



Allow stripe count to increase for larger files
• Improve aggregate IO bandwidth for large files

• Do not add overhead for small files

• Start with one stripe, add stripes incrementally as file size increases

• Balance lower overhead vs. performance and space balance

Covered (grey) region of component is inaccessible/sparse
• Allows merging/replication/separation of components from plain files

Progressive File Layouts (Intel/ORNL, 2.10)

LAD 2015 109/16/2015

Component 0

Component 1
1G

EOF

Component 2

Object 4

0

32M

1614 15 1716



PFL Prototype Performance Comparison

9/16/2015Intel Confidential 11

stripe=1

stripe=-1

PFL small

PFL med

16 threads - Single Client

IOR File per Process Write

stripe=1

stripe=-1

PFL Large

512 Threads - 32 Client

IOR Shared File Write

stripe=1

stripe=-1

PFL small

PFL med

16 threads - Single Client

mdtest file stat/sec

stripe=1

stripe=-1

PFL small

PFL med

PFL large

512 Threads - 32 Client

mdtest file stat/sec



Allow redundancy at the file level
• Avoid the need for multi-path storage or failover (local server storage OK)

• Redundancy can be selected/added/removed on a per-file basis

• Reads balanced between replicas, recover read errors from replica

• Can tune IO overhead/performance vs. file availability

Phase 1: Delayed replication by external resync tool
• For read-mostly workloads, minimizes write overhead at client

• Only primary replica modified, non-primary replica(s) marked stale on first write

• ChangeLog/copytool drives resync tool after write finished, or if OST is offline in Phase 2

Phase 2: Replica updated immediately by client
• Client sends writes to each OST, marks component stale if write fails

File Level Replication

LAD 2015 129/16/2015

Component 0

Component 1

Object 4 (PRIMARY, PREFERRED)

delayed resyncObject 14 (STALE)



• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, 
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, 
course of dealing, or usage in trade.

• This document contains information on products, services and/or processes in development. All information provided 
here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, 
specifications and roadmaps.

• Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are 
forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that 
could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.

• The products and services described may contain defects or errors known as errata which may cause deviations from 
published specifications. Current characterized errata are available on request.

• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software 
or service activation. Performance varies depending on system configuration. No computer system can be absolutely 
secure. Check with your system manufacturer or retailer or learn more at 
http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html.

• Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, 
or configuration will affect actual performance. Consult other sources of information to evaluate performance as you 
consider your purchase.

• For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

• Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others

© 2015 Intel Corporation.

Legal Information

http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html
http://www.intel.com/performance


9/16/2015LAD 2015 14



Backup Slides

9/16/2015Intel Confidential 15



LFSCK performance improvements (Phase 4)

• Improve object iteration, don't load objects unnecessarily

• Avoid a full scrub if only a few objects are found inconsistent

• Tunable, launch full scrub if more than 60 errors within 60s

• Limit DLM locking to only affected name instead of whole directory

• Predict locking based on recent history

• LFSCK doesn't lock by default, only lock & reverify on inconsistency

• If errors recently seen LFSCK locks objects before doing checks

• Improved logging of LFSCK-detected inconsistencies

LFSCK Phase 4 is the final phase of this project

http://wiki.opensfs.org/images/3/3c/LFSCK_Performance_SolutionArchitecture.pdf

http://cdn.opensfs.org/wp-content/uploads/2013/04/Zhuravlev_LFSCK.pdf

LFSCK Phase 4 (Intel/OpenSFS 2.8)

16LAD 2015

http://wiki.opensfs.org/images/3/3c/LFSCK_Performance_SolutionArchitecture.pdf
http://cdn.opensfs.org/wp-content/uploads/2013/04/Zhuravlev_LFSCK.pdf


Spread a single directory across multiple MDTs
• Reduce contention, improve performance for large directories

• Directory layout + name hash locates slave MDT directory entry

• Directory shard on each MDT independent (lock, lookup, modify)

• Inode created on the same MDT as name entry

• Tool to migrate directories/files from one MDT to another

DNE Phase 2 Async Commits is the final phase of this project

DNE Phase 2 Striped Directories (Intel/OpenSFS 
2.8)

LAD 2015 17

Dir shard 0

Striped Directory

fileA

Dir shard 1 Dir shard 2 Dir shard 3

fileB fileC fileD



Change within MDT (mkdir, rmdir, rename) never synchronous

DNE remote/striped directory create synchronous in 2.4-2.7
• Cross-MDT rename() or link() weren't working (returned -EXDEV)

Async commit implements distributed DNE recovery
• Each target (master/slave) writes a full redo log of all updates

• If any target commits a change it can be replayed on all involved targets

• Ensures all-or-nothing semantic for namespace-visible changes

• Reduced latency for remote/striped directory creates

• Allow rename() and link() to work correctly across MDTs

• Foundation for future features (e.g. cross-MDT mirrored objects)

http://wiki.opensfs.org/images/f/ff/DNE_StripedDirectories_HighLevelDesign.pdf

DNE 2 Asynchronous Commit (Intel/OpenSFS 2.8)

LAD 2015 18

http://wiki.opensfs.org/images/f/ff/DNE_StripedDirectories_HighLevelDesign.pdf


Clean up CLIO code and interfaces
• Simplify complex internal locking code

• Replace old ioctl interfaces with proper methods

• Remove non-functional interop code for WinNT and MacOS

• Remove extra abstraction layer complexity and overhead

• Remove non-functional liblustre code and abstractions

• Remove access to LOV layout internals throughout code

• Preparation for handling of more complex file layouts (e.g. PFL)

Client Performance Improvements
• Larger RPC sizes for improved allocation and disk IO

• Single-threaded IO performance improvements

http://wiki.opensfs.org/images/b/b7/CLIOSimplificationDesign_HighLevelDesign.pdf

Client IO Cleanup/Speedup (Intel/OpenSFS 2.8+)

LAD 2015 19

http://wiki.opensfs.org/images/b/b7/CLIOSimplificationDesign_HighLevelDesign.pdf


Currently limited to one modifying RPC (+close) per client
• last_rcvd slot on MDT for each client to reconstruct reply

• Many concurrent clients limited by MDS performance

Dynamic log on MDT for multiple saved RPC replies per 
client
• Each metadata-modifying RPC has a separate tag/index

• Single client multi-threaded create/unlink performance improved

https://jira.hpdd.intel.com/browse/LU-5319

Client Metadata RPC Scaling (Bull/Intel 2.8)
(aka multi-slot last_rcvd) 

LAD 2015 20

https://jira.hpdd.intel.com/browse/LU-5319


LNet support for Intel® Omni-Path host fabric interface (HFI)

• Next generation interconnect from Intel

• Compatible with OFED verbs interface

• Lustre automatically sets LNet o2iblnd tuning for improved performance

Intel® Omni-Path Architecture Gen 1 (Intel 2.8)

LAD 2015 21



Creating Progressive File Layouts

9/16/2015 22LAD 2015


