
C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Testing Lustre for Robustness and
Scalability

Cory Spitz and Chris Horn
Cray Inc.

LAD ‘14

27/09/14
1

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Background

27/09/14
2

● Started with a great customer that motivated and pushed
us to fix some long standing architectural issues

●  Looking for comprehensive RAS

● But there is a fundamental single point of failure in the
Lustre protocol

● Namely, ASTs can’t be resent
●  bugzilla.lustre.org BZ 3622, opened June 2004
●  Aka LU-7 and LU-5520

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Goals

27/09/14
3

● Cover as many RAS cases as possible
●  Nominal operation
●  Failure cases
●  Secondary failures

● Survive a network flap (and lost traffic) (for some finite
time) without suffering any client evictions

● Don’t destabilize the codebase

● Start regular testing to ensure that there are no future
regressions

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Testing proved problematic

27/09/14
4

● Made best efforts to reproduce using in-house systems
●  However, these systems lack true scale

● But we really had to rely on the customer to give a
thumbs-up/down on any changes

● A call to action; We can’t rely on customers to find all
problems and validate all fixes

● Especially with RAS testing, which is too demanding on
the datacenter and admins

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

What are the issues?

27/09/14
5

●  Lots of issues; bugs started coming out of the woodwork

● What are all of the possible scenarios?

● What type of traffic could be lost?

● What behaviors exist between client & server?

● What is the proper test response?

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Where It All Goes Wrong

Adventures in Avoiding Client Evictions

27/09/14
6

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

The Goal

27/09/14
7

● Survive loss of traffic without evictions
●  Finite time (we won’t wait forever)
●  Minimize impact on application performance

● When a packet is dropped:
●  Client disconnect/reconnect
●  Packet needs to be resent
●  Avoid repeating the cycle
●  Bad router? à Modify routing table

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Lost Connections

27/09/14
8

● Router Issues
●  Using bad routes wastes time and resources
●  Need to wait for router ping
●  Remote interface death is potentially worse

●  need to wait for interface marked down then another router ping
(asymmetric route failure detection)

●  Cray able to leverage node health to help
●  You can too! Use lctl to mark peers up/down if you know the route is bad

●  router_ping_timeout and ping interval tuning
●  The connect RPC

●  Timeliness is important
●  Often dependent on proper router health detection

●  Clients couldn’t connect if they had outstanding RPCs (LU-1239)
●  Want quick-ish reconnect intervals

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Let’s talk

27/09/14
9

● Bulk I/O
●  Already resent (yay)
●  Handling different between nominal and failure/recovery
●  Want timeouts to happen quickly

●  at_min, at_max tuned so we wait long enough, but not too long
●  Found bug with early reply

●  Fix introduced a regression (sorry about that)
● AST

●  Blocking, Cancel, Completion, Glimpse (and replies)
●  LU-5520 landed, ASTs are now resent (yay)

●  LU-2827, LU-5266, LU-5496, LU-5579, LU-5530
●  Broke POSIX compliance (oops)

●  LU-5569, LU-5581
●  Client reconnect and route health detection is very important

●  (lost replies can lead to eviction)

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Let’s talk some more

27/09/14
10

● AST (cont.)
●  ldlm_enqueue_min tuned to allow resend logic to work its magic

●  ldlm_enqueue_min = max(2*net_latency, net_latency + quiescent time) +
2*at_min

●  Best effort
●  Will open LUDOC to share what we’ve learned

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Our test response

27/09/14
11

● Unit tests can’t cover it all, we need lots of manual testing

● Continue the typical tests, but ratchet up what constitutes
passing. Look at data verification and client evictions.
●  Failover/failback
●  Router death
●  Remote interface death (cable pulls)
●  Total network flap
●  Blade failure (Cray HSN resiliency)
●  Warmswap (Cray HSN resiliency)

● Create secondary failures
●  e.g. fail a router during recovery

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Next steps, increase the level of difficulty

27/09/14
12

● Drop a certain % of traffic (via FAILLOC failure injection)
●  Incorporate this into regular workload testing
●  SWL testing for releases

●  Implement an NRS policy to simulate high server load
●  Stress ptlrpc state machine, recovery, and adaptive timeouts
●  Ditto for test usage, but need to be careful about valid evictions

● Use imperative recovery to trick clients into reconnecting

● Begin combinations of the above

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Reference

27/09/14
13

●  LU-5520 ldlm: resend AST
●  Fallout:

●  LU-2827 mdt: Also handle resend for
layout-lock

●  LU-5266 ldlm: granting the same lock
twice on recovery

●  LU-5496 ldlm: granting the same lock
twice on recovery

●  LU-5496 ldlm: reconstruct proper flags
on enqueue resend

●  LU-5579 ldlm: re-sent enqueue vs lock
destroy race

●  LU-5530 mdt: Properly match open lock
and unlock

●  Fixes tangentially related to
resending AST callbacks:
●  LU-5569 recreating a reverse import

produce a various fails.
●  LU-5581 ldlm: evict clients returning

errors on ASTs
●  Enhancements related to resending

AST callbacks:
●  LU-4942 at: per-export lock callback

timeout

●  LU-4578 ptlrpc: Early replies need
to honor at_max
●  Fallout: LU-5079 ptlrpc: fix early reply

timeout for recovery
●  LU-5073 ptlrpc: unlink request

buffer correctly
●  LU-5073 ptlrpc: prevent req

completion until LNet drops ref
●  Fallout:

●  LU-5259 ptlrpc: request gets stuck in
UNREGISTERING phase

●  LU-5341 ptlrpc: rpc times out in
unregistering phase

●  LU-5528 ptlrpc: fix race between
connect vs resend
●  LU-5528 ptlrpc: race at req

processing
●  Client connect related:

●  LU-793 ptlrpc: allow client to
reconnect with RPC in progress

●  LU-1239 ldlm: cascading client
reconnects

C O M P U T E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 S T O R E 	
 	
 	
 	
 	
 |	
 	
 	
 	
 	
 A N A L Y Z E

Merci!

Also, very special thanks to Xyratex for
solving LU-7/LU-5520 and for assistance
with the ensuing fallout

27/09/14
14

