
1

Lustre at Exascale

Eric Barton

Lead Architect

High Performance Data Division

2
High Performance Data Division

Department of Energy - Fast Forward Challenge

FastForward RFP provided US Government funding for

exascale research and development

Sponsored by 7 leading US national labs

Aims to solve the currently intractable problems of Exascale to

meet the 2020 goal of an exascale machine

RFP elements were CPU, Memory and Filesystem

Whamcloud won the Filesystem component

• 3 subcontractors – EMC, HDF Group, Cray

3
High Performance Data Division

Exascale I/O technology drivers

2012 2020

Nodes 10-100K 100K-1M

Threads/node ~10 ~1000

Total concurrency 100K-1M 100M-1B

Object create 100K/s 100M/s

Memory 1-4PB 30-60PB

FS Size 10-100PB 600-3000PB

MTTI 1-5 Days 6 Hours

Memory Dump < 2000s < 300s

Peak I/O BW 1-2TB/s 100-200TB/s

Sustained I/O BW 10-200GB/s 20TB/s

4
High Performance Data Division

Exascale I/O technology drivers

(Meta)data explosion

• Many billions of entities

– Mesh elements / graph nodes

• Complex relationships

• UQ ensemble runs

– Data provenance + quality

OODB

• Read/Write -> Instantiate/Persist

• Fast / ad-hoc search: “Where’s the 100 year wave?”

– Multiple indexes

– Analysis shipping

5
High Performance Data Division

Exascale I/O requirements

Constant failures expected at exascale

Filesystem must guarantee data and metadata consistency

• Metadata at one level of abstraction is data to the level below

Filesystem must guarantee data integrity

• Required end-to-end

Filesystem must always be available

• Balanced recovery strategies

– Transactional models

– Fast cleanup up failure

– Scrubbing

– Repair / resource recovery that may take days-weeks

6
High Performance Data Division

Exascale I/O Architecture

Compute
Nodes

I/O
Nodes

Burst buffer
NVRAM

Disk

Metadata
NVRAM

Storage
Servers

Site
Storage
Network

Exascale Machine Shared Storage

Exascale
Network

7
High Performance Data Division

I/O stack

Features & requirements

• Non-blocking APIs
– Asynchronous programming models

• Transactional == consistent thru failure
– End-to-end application data & metadata integrity

• Low latency / OS bypass
– Fragmented / Irregular data

Layered Stack

• Application I/O
– Multiple top-level APIs to support general purpose or application-specific I/O models

• I/O Dispatcher
– Match conflicting application and storage object models

– Manage NVRAM burst buffer / cache

• DAOS
– Scalable, transactional global shared object storage

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

8
High Performance Data Division

Transactions

Consistency and Integrity

• Guarantee required on any and all failures
– Foundational component of system resilience

• Required at all levels of the I/O stack
– Metadata at one level is data

to the level below

No blocking protocols

• Non-blocking on each OSD

• Non-blocking across OSDs

I/O Epochs demark globally consistent snapshots

• Guarantee all updates in one epoch are atomic

• Recovery == roll back to last globally persistent epoch
– Roll forward using client replay logs for transparent fault handling

• Cull old epochs when next epoch persistent on all OSDs

Time

U
p
d
a
te

s

I/O Epochs

9
High Performance Data Division

I/O stack

Applications and tools

• Query, search and analysis
– Index maintenance

• Data browsers, visualizers, editors

• Analysis shipping
– Move I/O intensive operations to data

Application I/O

• Non-blocking APIs

• Function shipping CN/ION

• End-to-end application data/metadata integrity

• Domain-specific API styles
– HDFS, Posix, …

– OODB, HDF5, …
– Complex data models

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

10
High Performance Data Division

I/O Dispatcher

I/O rate/latency/bandwidth matching

• Burst buffer / prefetch cache

• Absorb peak application load

• Sustain global storage performance

Layout optimization

• Application object aggregation / sharding

• Upper layers provide expected usage

Higher-level resilience models

• Exploit redundancy across storage objects

Scheduler integration

• Pre-staging / Post flushing

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

11
High Performance Data Division

DAOS Containers

Distributed Application Object Storage

• Sharded transactional object storage

• Virtualizes underlying object storage

• Private object namespace / schema

Share-nothing create/destroy, read/write

• 10s of billions of objects

• Distributed over thousands of servers

• Accessed by millions of application threads

ACID transactions on objects & containers

• Defined state on any/all combinations of failures

• No scanning on recovery

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

12
High Performance Data Division

DAOS Container
Container FID Shard

Shard

Shard

Container Inode

UID, perms etc

Shard FIDs

Named Obj IDX

Anon Obj IDX

Object

Parent FID Shard Metadata (space etc)

Parent FID Obj metadata (size, etc)

Data

13
High Performance Data Division

Transactional OSD

DAOS container shards

• Space accounting

• Quota

• Named & anonymous objects

Transactions

• Container shard versioned by epoch

– Implicit commit

– Epoch becomes durable when globally persistent

– Explicit abort

– Rollback to specific container version

• Out-of-epoch-order updates

• Version metadata aggregation

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

14
High Performance Data Division

Server Collectives

Collective client eviction

• Enables non-local/derived attribute caching (e.g. SOM)

Collective client health monitoring

• Avoids “ping” storms

Global epoch persistence

• Enables distributed transactions (SNS)

Spanning Tree

• Scalable O(log n) latency
– Collectives and notifications

• Discovery & Establishment
– Gossip protocols

– Accrual failure detection

15
High Performance Data Division

Exascale filesystem

Conventional namespace

• Works at human scale

• Administration, security & accounting

• Legacy data and applications

DAOS Container files

• Works at exascale

• Application and middleware-specific schemas

• Consistency guaranteed

Storage pools

• Streaming v. IOPS

• Data management
– Migration between storage pools

– Rebalance within storage pools

• Pool quota accounting and enforcement

/projects

/Legacy /HPC /BigData

Simulation data

OODB metadata

data data data data data data data data data data data data data data data

OODB metadata OODB metadata OODB metadata OODB metadata

Posix striped file

a b c a b c a b c a

MapReduce data

data data data

data data data

data data data

Blocksequence

Thank You

