
1 

Lustre at Exascale 

Eric Barton 

Lead Architect 

High Performance Data Division 



2 
High Performance Data Division 

Department of Energy - Fast Forward Challenge 

FastForward RFP provided US Government funding for 

exascale research and development 

Sponsored by 7 leading US national labs 

Aims to solve the currently intractable problems of Exascale to 

meet the 2020 goal of an exascale machine 

RFP elements were CPU, Memory and Filesystem  

Whamcloud won the Filesystem component 

•  3 subcontractors – EMC, HDF Group, Cray 
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High Performance Data Division 

Exascale I/O technology drivers 

2012 2020 

Nodes 10-100K 100K-1M 

Threads/node ~10 ~1000 

Total concurrency 100K-1M 100M-1B 

Object create 100K/s 100M/s 

Memory 1-4PB 30-60PB 

FS Size 10-100PB 600-3000PB 

MTTI 1-5 Days 6 Hours 

Memory Dump < 2000s < 300s 

Peak I/O BW 1-2TB/s 100-200TB/s 

Sustained I/O BW 10-200GB/s 20TB/s 
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High Performance Data Division 

Exascale I/O technology drivers 

(Meta)data explosion 

• Many billions of entities 

– Mesh elements / graph nodes 

• Complex relationships 

• UQ ensemble runs 

– Data provenance + quality 

OODB 

• Read/Write -> Instantiate/Persist 

• Fast / ad-hoc search: “Where’s the 100 year wave?” 

– Multiple indexes 

– Analysis shipping 
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High Performance Data Division 

Exascale I/O requirements 

Constant failures expected at exascale 

Filesystem must guarantee data and metadata consistency 

• Metadata at one level of abstraction is data to the level below 

Filesystem must guarantee data integrity 

• Required end-to-end 

Filesystem must always be available 

• Balanced recovery strategies 

– Transactional models 

– Fast cleanup up failure 

– Scrubbing 

– Repair / resource recovery that may take days-weeks 
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High Performance Data Division 

Exascale I/O Architecture 
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High Performance Data Division 

I/O stack 

Features & requirements 

• Non-blocking APIs 
– Asynchronous programming models 

• Transactional == consistent thru failure 
– End-to-end application data & metadata integrity 

• Low latency / OS bypass 
– Fragmented / Irregular data 

Layered Stack 

• Application I/O 
– Multiple top-level APIs to support general purpose or application-specific I/O models 

• I/O Dispatcher 
– Match conflicting application and storage object models 

– Manage NVRAM burst buffer / cache 

• DAOS 
– Scalable, transactional global shared object storage 
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High Performance Data Division 

Transactions 

Consistency and Integrity 

• Guarantee required on any and all failures 
– Foundational component of system resilience 

• Required at all levels of the I/O stack 
– Metadata at one level is data 

to the level below 

No blocking protocols 

• Non-blocking on each OSD 

• Non-blocking across OSDs 

I/O Epochs demark globally consistent snapshots 

• Guarantee all updates in one epoch are atomic 

• Recovery == roll back to last globally persistent epoch 
– Roll forward using client replay logs for transparent fault handling 

• Cull old epochs when next epoch persistent on all OSDs 
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High Performance Data Division 

I/O stack 

Applications and tools 

• Query, search and analysis 
– Index maintenance 

• Data browsers, visualizers, editors 

• Analysis shipping 
– Move I/O intensive operations to data 

Application I/O 

• Non-blocking APIs 

• Function shipping CN/ION 

• End-to-end application data/metadata integrity 

• Domain-specific API styles  
– HDFS, Posix, … 

– OODB, HDF5, … 
– Complex data models 
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High Performance Data Division 

I/O Dispatcher 

I/O rate/latency/bandwidth matching 

• Burst buffer / prefetch cache 

• Absorb peak application load 

• Sustain global storage performance  

Layout optimization 

• Application object aggregation / sharding 

• Upper layers provide expected usage 

Higher-level resilience models 

• Exploit redundancy across storage objects 

Scheduler integration 

• Pre-staging / Post flushing 

I/O Dispatcher 
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High Performance Data Division 

DAOS Containers 

Distributed Application Object Storage 

• Sharded transactional object storage 

• Virtualizes underlying object storage 

• Private object namespace / schema 

Share-nothing create/destroy, read/write 

• 10s of billions of objects  

• Distributed over thousands of servers 

• Accessed by millions of application threads 

ACID transactions on objects & containers 

• Defined state on any/all combinations of failures 

• No scanning on recovery 
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High Performance Data Division 

DAOS Container 
Container FID Shard 
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High Performance Data Division 

Transactional OSD 

DAOS container shards 

• Space accounting 

• Quota 

• Named & anonymous objects 

Transactions 

• Container shard versioned by epoch 

– Implicit commit 

– Epoch becomes durable when globally persistent 

– Explicit abort 

– Rollback to specific container version 

• Out-of-epoch-order updates 

• Version metadata aggregation 
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High Performance Data Division 

Server Collectives 

Collective client eviction 

• Enables non-local/derived attribute caching (e.g. SOM) 

Collective client health monitoring 

• Avoids “ping” storms 

Global epoch persistence 

• Enables distributed transactions (SNS) 

Spanning Tree 

• Scalable O(log n) latency 
– Collectives and notifications 

• Discovery & Establishment 
– Gossip protocols 

– Accrual failure detection 
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High Performance Data Division 

Exascale filesystem 

Conventional namespace 

• Works at human scale  

• Administration, security & accounting 

• Legacy data and applications 

DAOS Container files 

• Works at exascale 

• Application and middleware-specific schemas 

• Consistency guaranteed 

Storage pools 

• Streaming v. IOPS 

• Data management  
– Migration between storage pools 

– Rebalance within storage pools 

• Pool quota accounting and enforcement 
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