cheap 'n' deep THE HOLY-GRAIL OF STORAGE

Stéphane Thiell, Kilian Cavalotti - Stanford Research Computing

Lustre Administrators and Developers Workshop Paris, France – Sep 20, 2016

Contents

Introduction

- Stanford University
- Stanford Research Computing Center (SRCC)
- Supported and shared computing resources


SRCC storage requirements

SRCC cheap 'n' deep storage: the Oak project

Google Drive: free 'n' deep storage?

Stanford University

FACTS AT A GLANCE

Stanford University

Stanford University is one of the world's leading research universities

- 2,153 faculty members
- 20 Nobel laureates
- 16,122 students (undergraduates and graduates)
- 5,500 externally sponsored research projects
- Seven Schools
 - > Business
 - > Earth, Energy & Environmental Sciences
 - > Education
 - > Engineering
 - > Humanities and Sciences
 - > Law
 - > Medicine

<u>http://facts.stanford.edu/</u>

Stanford Research Computing Center (SRCC)

OVERVIEW

Stanford Research Computing Facility (SRCF)

- Stanford building located on the SLAC campus
 - completed in the fall of 2013
 - > production HPC services being offered since January 2014
 - can host 150 racks at 20kW
 - resilient power infrastructure (3 megawatts)

Especially energy efficient

- > designed to host high performance computing equipment
- > cooled with ambient air fan systems for 90% of the year

Network connectivity

- > 100 gigabit network linking the SRCF to campus backbone, the Internet, Internet2 and other national research networks
- > additional 100 gigabit to commodity Internet expected by year's end

Three service models

- Hosting
- Supported clusters and servers
- Shared computing resources

SRCC shared computing resources

Sherlock

- **Condo** cluster (850+ nodes, CPU and GPU)
- Open to the Stanford community as a resource to support **sponsored research**

Sherlock's storage spaces

- Isilon (NFS) for home directories
- Lustre "scratch" behind Inet routers
 - > Dell servers, MD3x60 disk arrays
 - Lustre 2.7 (IEEL 3.0)
 - > 3 PB

Farmshare

- General compute environment
 - > Ubuntu Linux based
- Open to students, great for coursework and research-related computing prior to scaling up to Sherlock

Farmshare's storage spaces

- AFS
- Isilon (NFS)
- ZFS on Linux

SRCC supported computing/storage resources

SCG's DDN GridScaler

SNI (ZFS on Linux)

XStream GPU cluster

- Cray CS-Storm
- 520 Nvidia K80s (1040 GPUs)
- National Science Foundation (NSF) Major Research Instrumentation (MRI) grant
- 20% of GPUh made available to XSEDE
- Main storage: Lustre Sonexion (1.4 PB)

Plus many smaller lab or departmental systems...

SCG clusters

- The Stanford Genomics Clusters are available to members of the Genomics research community at Stanford
- Managed by the Genetics Bioinformatics Service Center (GBSC) through a charge-back model
- Main storage: 4.4 PB of GPFS (DDN GridScaler)

SNI virtualization system

 VDI based on KVM and Ceph with ZFS on Linux backend storage for the Stanford Neurosciences Institute

SRCC storage requirements

STANFORD RESEARCH COMPUTING CHEAP 'N' DEEP STORAGE

> California live oak (Quercus agrifolia) Source: wikipedia.org

Storage needs

Our researchers need:

- a capacity-oriented, longer-term storage space
- with immediate access to their data
- not intended for high duty cycle workloads
- easily accessible from anywhere
- ideally only pay for disks, at Fry's price of course...

Use cases:

- HPC "campaign storage" for the duration of research projects
- Store and then easily access large datasets from experiments
 - > from an HPC cluster like Sherlock
 - > from desktops, laptops...
 - using NFS, CIFS, WebDAV, Globus...
 - through web applications like ownCloud, Jupyter...

Specifications

- Affordability
 - > Cheap: that's **< \$100/TB**, for 3+ years, thus **< \$33/TB/year**
 - > Condo model: offer an affordable base expansion unit
- Scalability in a condo model
 - > Condo model: start small, grow often, scale to petabytes
 - Focus on volume with no extension limit
- Diversity of access protocols/methods to enable:
 - > standard HPC users
 - > the growing number of "long tail of science" users
- Manageability and self-sustainability

Challenges

- "Low **price per TB**" ←/→ "Affordable increments"
 - > contradictory goals
- Problems with most vendor solutions in our case
 - > Not easily expandable, if at all
 - > Expensive initial investment
 - > Systems based on ultra-dense disk arrays (84 or 90 disks)
 - steep price for extensions
 - Closed-source management software

Major Oak, English Oak (Quercus robur) Source: wikipedia.org

Stanford University

Introducting Oak

THE ONE-OF-A-KIND STORAGE SYSTEM

Introducing Oak

Main drivers

- Multiple expansion units
- Minimal infrastructure
- Affordable hardware components
- Maximum performance with given hardware

Solution

- Global Lustre filesystem
- Multi-protocol gateways
- Lightweight, open-source management software only

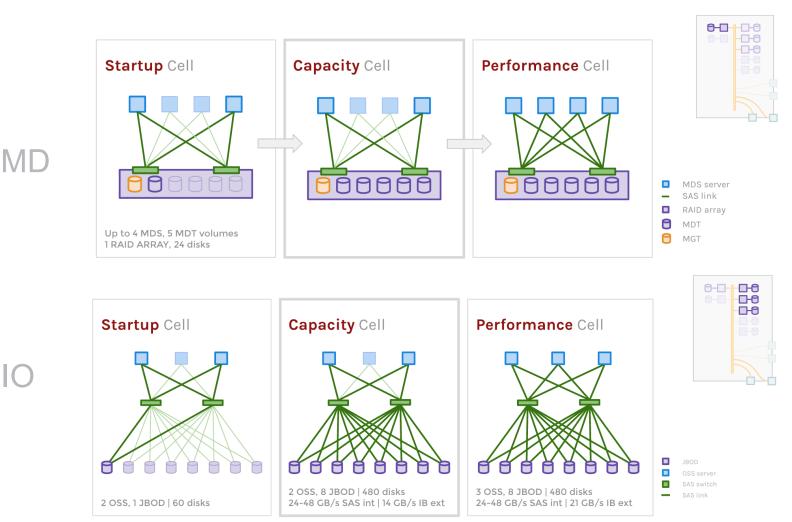
Introducing Oak – Main ideas

IO cells (OSS)

- Maximize the number of disks per server
- Use cheap mid-sized JBODs targeted for the Cloud market
- Build a design that:
 - > fits a condo model
 - > grows without downtime
 - > is highly available

MD cells (MDS)

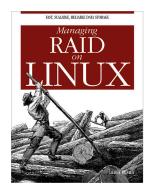
- Extensible and DNE ready
- Use traditional MDS and RAID-10 arrays



Main ideas (I/O cells)

- Use mid-sized JBODs targeted for the Cloud market
 - > 60 disks have a great price point
 - > 6x 10-disk RAID volumes play well with 2 or 3 OSS
- Link servers and disk arrays through SAS switches
 - > connect more disks to less servers
 - > keep number of required servers minimal
 - > SAS cheaper than Fiber Channel
- Advantage of a dual-switch setup:
 - > easy redundancy (HA) and SAS multipathing
 - > no need to touch exiting servers or JBODs to grow (**no downtime**):
 - need more space? plug in a new JBOD
 - need more performance? plug in a new server
 - > can still start with bare minimum configuration: 1 JBOD

Scalable cell designs



Stanford University

 $\left| \right\rangle$

Main ideas (IO cells cont'd)

- Interconnect IO cells with Infiniband
 - > few ports required
 - > allows for infinite expansion
 - > fill up switch, extend the fabric if needed
- Use Linux software RAID (and Idiskfs)
 - cheaper than hardware RAID (as in free)
 - > great RAID-6 performance on Haswell processors
 - > memory management control
 - per md array stripe_cache_size dynamic setting
 - > periodic background data check
 - > target failover with multi-mount protection

MD cell hardware components

- Traditional but extensible MD cells
- Similar to our current /scratch config (has been very reliable)
- Startup MD cell up to 900M inodes

2 x MDS Dell R630 2 x Intel E5-2643 v3 128 GB RAM 1 x Avago SAS 9300-8e dual-port SAS 12Gb/s HBA 1 x Infiniband FDR

1 x Dell MD3420 2U 24-disk array w/ dual-controller

- 4 x SAS 12Gb/s ports per controller
 - > up to 4 MDS in MD cell
- RAID-10 and snapshot support for DR

Dell 900GB 10K rpm SAS hard drives

- Best option (cost and IOPS)
- First MDT with 4 drives in RAID-10

IO cell hardware components

2 x OSS Dell R630 2 x Intel E5-2650v3 256 GB RAM

- 2 x Avago SAS 9300-8e dual-port SAS 12Gb/s HBA
- 1 x Infiniband FDR

2 x SAS Switch Astek A54812-SW (<\$3,500 ea)

- 12 x SAS 12Gb/s ports (x4 each)
- Rackable
- Redundant power supplies
- LSI SAS expander chip
- Management port and tools

8 x 60-disk JBOD QCT QuantaVault JB4602 (<\$4,000 ea)

- SAS 12Gb/s ports
- LSI SAS expander chips
- Hot-swappable redundant SAS interface modules (SIM)

480 x Seagate Enterprise Capacity 3.5 v5 hard drive (<\$400)

- Makara+ 8TB PMR native SAS 12Gb/s 256MB
- 5 years warranty
- Cheap! Same price for SATA or SAS version

IO cell SAS backend overview

- 8-phy SAS-3 wide ports (at 96 Gb/s) are created by using two HD Mini SAS cables
 - tested with Avago SAS 9300-8e
 HBAs and Astek SAS switches
 - > all 24 SAS switch ports are used
- 48 GB/s SAS backend bandwidth
 - > blocking factor of 2:1
 - found to be a good match for md/raid6 avx2x4 algorithm performance: ~22GB/s per server (2 x E5-2650v3)
- Redundant paths to each SAS drive

48 GB/s

24 GB/s

Infiniband

7 GB/s

8-phy wid

using 2 c

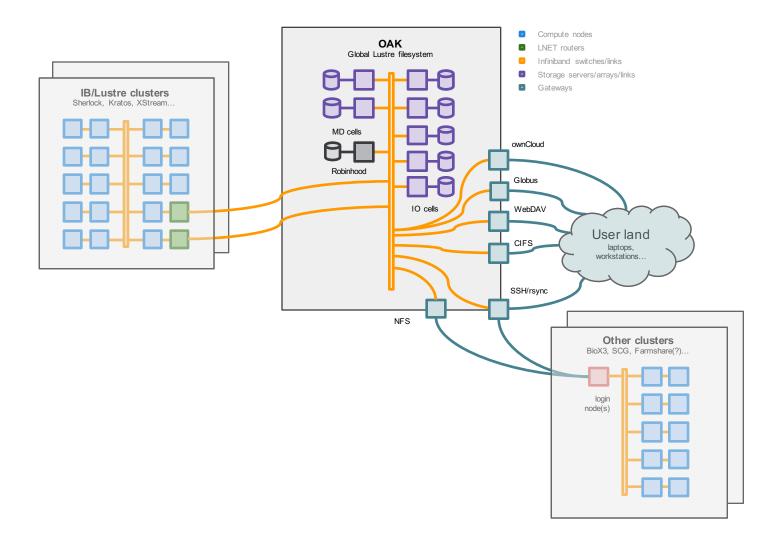
24 GB/s 16 phys @ 12 Gb/s

48 GB/s

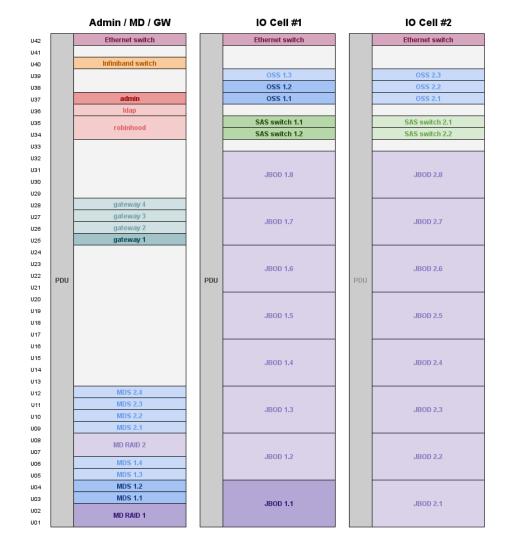
6 GB/s

Oak: other hardware equipment

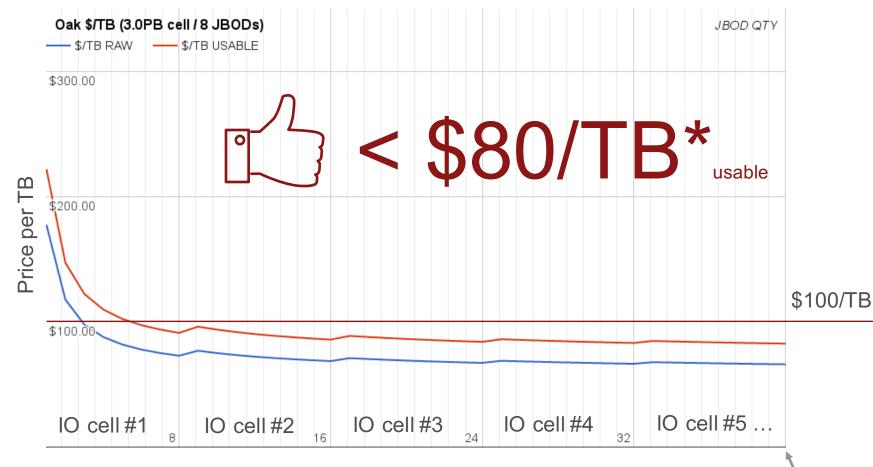
Gateways


- Dell R630 Haswell server
 - > 2 x E5-2650 v3 2.3GHz 10C/20T 128 GB RAM
 - > 10 gigabit external link
 - > SR-IOV support on both 10G and IB

Robinhood server


- Dell R730 Haswell server
 - > 2 x E5-2643 v3 3.4GHz 6C/12T 256 GB RAM
 - > 4 x 200 GB SSD Intel S3610

Global architecture


Rack layout

Predictable hardware cost

Counting everything! Racks, cables, gateways...

(15PB usable)

*limitations may apply, prices subject to change

Lustre-based solution for "cheap" storage systems?

Oak aims to demonstrate that a Lustre-based storage system can actually be affordable when coupled with software RAID and COTS hardware

- Oak's Lustre IO cell with Linux MD RAID facts
 - > 3.75 PB raw
 - > 48 OSTs of 64 TB
 - > 2 x 256 GB of RAM = **136 MB of RAM per TB** of raw storage
 - by comparison, Ceph requires **1 GB of RAM per TB** of storage [1]
 - > High number of disks per CPU socket: 120 disks per CPU socket
 - Yahoo! has Ceph clusters, each has 54 nodes (2xCPU, 15x4TB HDD each) for a total capacity of 3.2 PB [2]: 7.5 disks per CPU socket
- Is Lustre the <u>perfect</u> solution for cheap 'n' deep storage?
 - > No because Lustre's administration complexity is still a *no go* for many...

[1] from <u>http://docs.ceph.com/docs/jewel/start/hardware-recommendations/</u>
[2] from <u>http://www.nextplatform.com/2015/04/16/inside-the-ceph-exascale-storage-at-yahoo/</u>

Oak's software components

Operating system	CentOS 7.2
Cluster management	xCAT 2.12
Lustre	Lustre 2.7+ (TBD: Intel Foundation Edition for Education)
Lustre management	shine (master)
Policy Engine / FS monitoring	robinhood v3

Software development in progress

sasutils: Serial Attached SCSI (SAS) Linux utilities and Python library

- Display SAS fabric tree and provide aggregated view of devices
- sas_monitor daemon that generates change notifications
- Based on sysfs (and also sg3_utils and smp_utils)
- Support SES-2 Enclosure Nickname
- Available at <u>https://github.com/stanford-rc/sasutils</u>

\$ sas_discover oak-io1-s1 I--host19: board: SAS9300-8e 03-25656-02A SV53345573, product: LSISAS3008, bios: 04.00.00.00, fw: 12.00.00.00 `---8x--expander-19:0 vendor: ASTEK, product: Switch184, rev: 0004 I---1x--end_device-19:0:0 vendor: ASTEK, model: Switch184, rev: 0004 `---4x--expander-19:1 vendor: QCT, product: JB4602 SIM 0, rev: 1100 I---1x--end_device-19:1:10 vendor: SEAGATE, model: ST8000NM0075, rev: E002 size 8.0TB I---1x--end_device-19:1:11 vendor: SEAGATE, model: ST8000NM0075, rev: E002 size 8.0TB

Software development in progress (cont'd)

shine: tool to setup and manage Lustre file system(s) on a cluster

Add hooks in shine to easily assemble/stop MD arrays on target start/stop.

Other shine-related work: High Availability without Pacemaker

- shine already has target failover support (master branch)
- develop a centralized Lustre supervisor with simple policy rules to
 - > check servers and possibly also some clients
 - > fence non-responsive server in case of a real issue
 - > trigger target failover using shine
 - generate notifications (eg. Email, Slack)

Oak Alley Plantation in Vacherie, Louisiana Source: wikipedia.org (author: Emily Richardson)

Stanford University

Google Drive

LUSTRE/HSM COPYTOOL

Why Google Drive?

Cloud storage

 Google Drive is a file storage and synchronization service created by Google. It allows users to store files in the cloud, share files, and edit documents, spreadsheets, and presentations with collaborators.

Free and unlimited?

 "We'll bring Drive for Education, with unlimited storage and enhanced administrative controls, to the Google Apps for Education platform" - "Individual file sizes up to 5TB will be supported"

Posted: 9/30/2014	G+1 96	f in Share 19
controls, to the Google Apps for Education Google Apps for Education accounts at no	e for Education, with unlimited storage and n platform. In the coming months, the feat o charge: Google Drive files, Gmail messages, and	ures below will be added to all
need. Individual file sizes up to 5TB		,,
 Vault: Use <u>Google Apps Vault</u> to are important information for your organ 	chive emails and chats, to search Drive file iization.	es, and to preserve
Enhanced auditing and controls:	Gain insights from new activity and audit r	eports for Google Drive.

http://googleappsupdates.blogspot.com/2014/09/announcing-drive-for-education.html

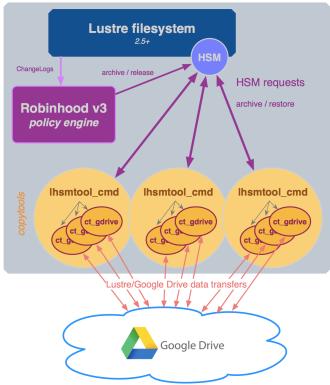
lhsmtool_cmd, a new Lustre/HSM agent

Generic command copytool that can be used with any backend.

Features

- comes with the Lustre/HSM magic but does NOT perform the copy itself
- spawns pre-defined sub-commands (copytools)
 - > child commands inherit parent's file descriptors (basic Unix concept)
 - > pass up seekable file descriptor suitable for Cloud API libraries
 - → reports progress by sneaking into current file position ☺

Development

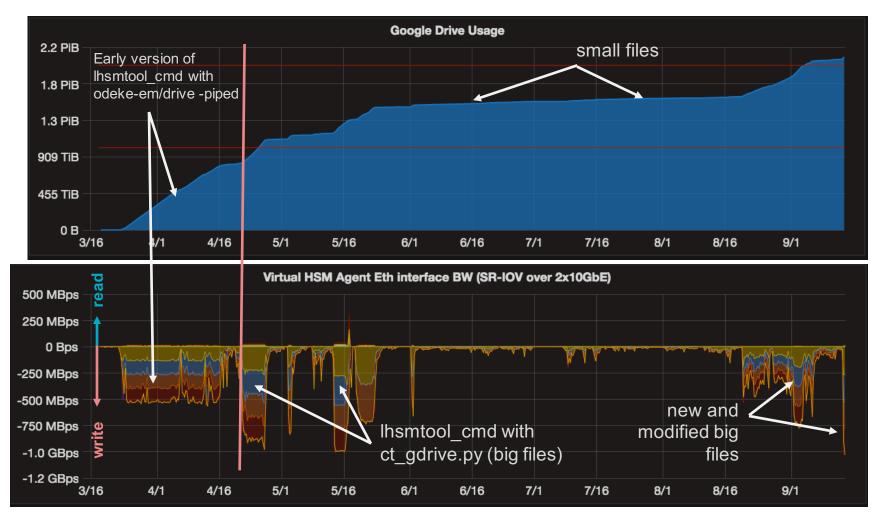

- open source, available in robinhood-tools
- created by Henri Doreau (CEA) thank you, Chairman!
- Ihsmtool_cmd is running at Stanford for more than 6 months now

Google Drive Copytool

Implemented because existing tools are not fast enough

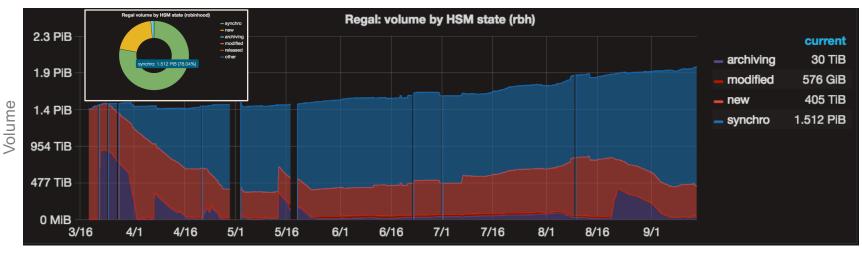
ct_gdrive.py

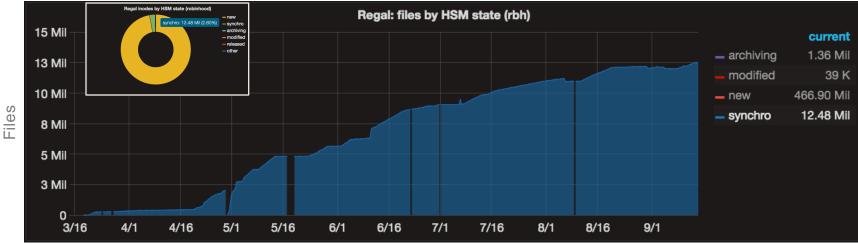
- true *copytool* copy data between Lustre and Google Drive
- based on the Google API Client Library for Python
- use Lustre FID as file name
- implement recommended exponential backoff strategy
- ct_gdrive is used for lhsmtool_cmd archive and restore commands



/etc/lhsm_cmd.conf: [commands] archive = /path/to/ct_gdrive.py --action=push --fd={fd} --fid={fid} --logging_level=WARNING --lustre-root=/lustre --gdrive-root=0B4bz2HUB5rZtallfYU03ABCDEFg --creds-dir /path/to/creds/ restore = /path/to/ct_gdrive.py --action=pull --fd={fd} --fid={fid} --logging_level=WARNING --lustre-root=/lustre --gdrive-root=0B4bz2HUB5rZtallfYU03ABCDEFg --creds-dir /path/to/creds

Available at https://github.com/stanford-rc/ct_gdrive


A Journey with Lustre/HSM to Google Drive


Archiving Sherlock's /scratch

A Journey with Lustre/HSM to Google Drive (robinhood)

Robinhood Grafana graphs

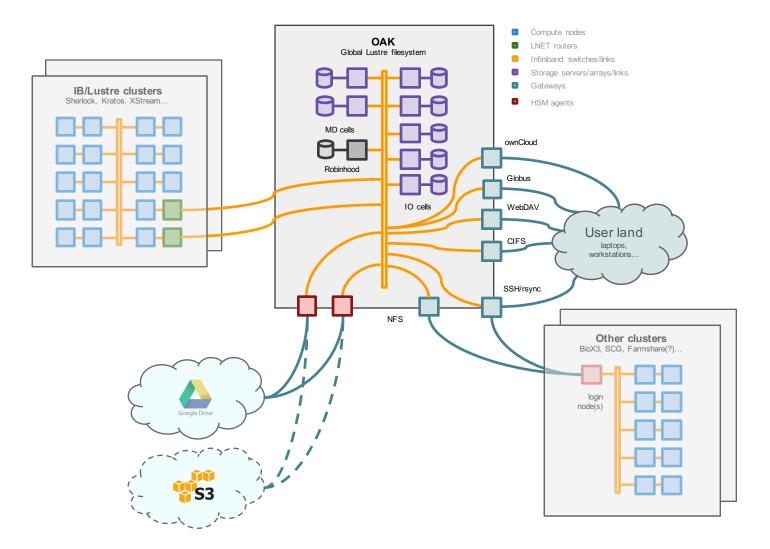
ct_gdrive experimentation: feedback and challenges

Google Drive's interesting features

- file versioning: older versions of files are kept at least 30 days
- search by description (ct_gdrive adds the original file path to the file description)

Google Drive's main limitation: small files

effective QPS (Query Per Second) per account is very low (~3/sec eff.)


Lustre/HSM's max_requests

- max_requests doesn't play well with QPS limits
- for best performance, set max_requests by file class (robinhood) being archived
- a hsm/max_requests_per_second would work in our case
- or delegate this to a user-space process having the global view?
 - > cf. discussion on <u>https://jira.hpdd.intel.com/browse/LU-7920</u>

Next Steps?

- store files in users' accounts (make ct_gdrive look for user credentials)
- per-user cloud backend selection
 - → Google Drive, Google Cloud Storage, S3, etc.

Future HSM-to-the-Cloud architecture with Oak

Stanford Drive	Q Search Drive
NEW	My Drive > regal > apiv3 -
My Drive	Name
Shared with me	► 0x200034cd4:0x264:0x0
C Recent	uestions?
2.1 PB used	2.1 PB x200034cd4:0x263:0x0
Coogle Photos 14 MB	0 bytes
	► 0x200034a16:0x331b:0x0
	► 0x200033d43:0x2213:0x0
	► 0x20003032c:0x1b9d6:0x0 🚢