
© 2019 Cray Inc.

F as te r Tree Wa lk i ng i n

Lus t re

LAD 2019
Nathan Rutman

nrutman@cray.com

© 2019 Cray Inc.

• Why does it matter
• A deep investigation
• Are we focused on the right thing?
• How can we make it better

Outline

© 2019 Cray Inc.

• Find

• User search

• Policies

• Filesystem stats (eg size distributions)

• Populate DB – but DB really is just for faster find

• Changelogs are (historically) slow / incremental / buggy / incomplete

• still need to stat, getxattr, fid2path

• need to occasionally re-sync from tree

• ls –l -- maybe?

• is it still too slow?

• statahead 100K dir: 25 seconds down to 3 seconds

Why?

© 2019 Cray Inc.

• D stat dir (ldlm_ibits_enqueue->getattr)
• D stat dir? (ldlm_glimpse_enqueue)
• D opendir (ldlm_ibits_enqueue->open)

• Dx readdir (mds_readpage)
• Fxx stat dirent (ldlm_ibits_enqueue->getattr)
• Fxx size osc (ldlm_glimpse_enqueue)

• D closedir (mds_close->close)
• Note that ordering above may change (e.g. open-read-close-stat)

• per Dir: 2x ibits_enqueue, glimpse, mds_readpage, mds_close
• per File: ibits_enqueue, glimpse on osc

Tree traversal

D: BIG
F: small

© 2019 Cray Inc.

cached drop mdc drop osc drop
mdc+osc

drop mdc+
osc+mdt

drop mdc+
mdt

Directory stat 112,119 11931 127,902 11411 5222 5404

File stat 60,020 9526 9929 3854 3164 8003

File stat (ms) 16 105 101 259 316 124

mdtest

Pure stat; no treewalk, single client

mdtest -n 150000 -u -C -f=20 -R -d /lus/nathan/mdt1/02

• mdc ibits_enqueue time = osc ibits_enqueue time

• no statahead; sequential mdt rpc then osc rpc

• forcing server to stat from disk vs mem – not a big impact 16-18%

• mdtest does not measure the larger directory traversal times

© 2019 Cray Inc.

objects/s

Directory 30,545

File 217,139

1 file per dir 60,000

fprof
Treewalk, 16 clients x 8 procs
10M empty dirs or files

• stats are 7x faster than directory reads
• effective scanning rate is gated by directory reads
• file stats are almost free for small dirs

(30k+30k in the same time as 30k)

© 2019 Cray Inc.

File system objects: 147814 (133k Files + 14k Dirs)

Time elapsed: 9.686485334s

Index rate (obj/sec): 14781

mdc.testfs-MDT0001-mdc-ffff8a77f16a2000.stats=

File/Dir samplesunits min max sum calc usec avg % of time

req_waittime 205258 [usec] 31 36014 22070734 107.53 100%

req_active 205258 [reqs] 1 17 539203 2.63

ldlm_glimpse_enqueue D 14255 [reqs] 1 1 14255

ldlm_ibits_enqueue F+2D 162211 [reqs] 1 1 162211 14935488 84.64 68%

mds_close D 14396 [usec] 37 12192 792288 async 55.04 4%

mds_readpage D 14396 [usec] 161 15890 6342958 440.61 29%

osc ldlm_glimpse_enqueue F 54838 [reqs] 27 12107 2835723 51.71 0%

Estimating times

• No direct measure of ldlm* times; assume waittime=processing time and ldlm
times are the remainder after mds* (maybe roughly right?)

1/3 time for readdir

2/3 time for getattr

• With dirs only, each readpage takes 4306us??

10:1 F:D

© 2019 Cray Inc.

• lctl set_param ldlm.namespaces.testfs-MDT0001-*.lru_size=clear
• echo 3 > /proc/sys/vm/drop_caches only has an impact on MDT

• Client caching can skip getattr, mds_readpage
• client cached: 49,271 files/s
• client MDC LRU clear: 14,781 files/s
• client and server clear: 8,694 files/s

• Clearing osc locks forces ldlm_glimpse_enqueue – but doesn’t affect rate much
• clear osc locks, but NOT mdc: 36,953 files/s
• no statahead (llite.testfs*.statahead_stats)

• statahead is triggered (& useful) only for single-threaded process
• DoM, and Lazy SoM will have no affect?

• Why is server caching helpful? MDT devices are capable of Miops
• Latency, cache logic overhead?

Caching effects on treewalk
single client
multiple processes

many processes
request stats in

parallel

MDTEST showed small effect of
server cache (20%) vs 70%
here – difference is readpage

© 2019 Cray Inc.

• ls –l or I/O on a file forces the client to get the layout

• But it doesn’t seem to be cached, at least not as an EA

• getfattr lustre.lov does cache it

• lfs getstripe costs 6 RPCs

[root@c-lmo216 ~]# ls -l /mnt/testfs/nathan/mdt1/test.txt
-rw-r--r-- 1 root root 45 Aug 27 10:29 /mnt/testfs/nathan/mdt1/test.txt
[root@c-lmo216 ~]# lctl get_param mdc.testfs-MDT0001*.stats
req_waittime 2 samples [usec] 349 446 795 320717
req_active 2 samples [reqs] 1 1 2 2
ldlm_ibits_enqueue 2 samples [reqs] 1 1 2 2
[root@c-lmo216 ~]# getfattr -R -d -m 'trusted.lov' -P -e hex /mnt/testfs/nathan/mdt1/test.txt
trusted.lov=0xd00bd10b…

[root@c-lmo216 ~]# lctl get_param mdc.testfs-MDT0001*.stats
req_waittime 3 samples [usec] 349 516 1311 586973
req_active 3 samples [reqs] 1 1 3 3
ldlm_ibits_enqueue 3 samples [reqs] 1 1 3 3

• LU-11367 llapi_get_lum_file_fd() should get stat+layout in single RPC

Layout info

© 2019 Cray Inc.

Stats are already fast! Not much to be gained.
• Improve client statahead

• long-lived threads
• aggressive statahead at opendir time

• Lsom to elminate OST glimpse LU-11554
• DoM to eliminate OST glimpse
• Layout should be free with stat LU-11367

Improvement ideas – low impact

© 2019 Cray Inc.

Warm the MDS cache
• Read the directory into server memory after opendir, assuming read is coming

• Stat all files in a dir after readdir to get them into cache (server statahead)

• Read all subdirectories on opendir/readdir patterns

Save a lookup
• Client creates dentries from readdir for local lookup

• see statahead HLD section 3.5, or LU-31 HLD “List Lock” discussion

Improvement ideas – medium impact

© 2019 Cray Inc.

unlock server IOPS with complex RPCs
• readdir+ stats files and returns all info with readdir LU-23
• opendir returns first readdir page in open response

• like “short read”
• increases latency of open, but saves readdir roundtrip

• opendir with readdir+/statx and create dentries+inodes
• return all file MD at opendir
• populate client dentry and inode caches with this info
• take directory update lock to insure dir doesn’t change
• no locks on any of the dentries or inodes; ok for statx with

AT_STATX_DONT_SYNC

Improvement ideas – high impact

© 2019 Cray Inc.

What can I do today with this investigation and potential enhancements?
• Tree walking is slow, but stats are fast
• So use stats without tree walking

• File/dir creates, deletes, renames affect mtime of parent dir
• Dirs are 1/10 of files
• Check dir mtimes against a database
• Shows you which dirs to re-check for updates
• Doesn’t see file mtime-only changes

A Hint

THANK YOU
Q u e s t i o n s ?

