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Motivation

Lustre employed in wide area networks (WAN) can result in
UID/GID conflicts (overlaps) and thus in uncontrolled data
modification and deletion.
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For the sake of simplicity GID is omitted here and in some remaining slides.
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e Users of UID-space A access data in UID-space I3 under their

UID of A.

e Use reserved UID-space, however we have no mechanism to
control whether reserved UID-space is truly employed.



Lustre UID Mapping (Problem)
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Suppose each domain A,C,D,... have > 1000 many Lustre users.
We have to maintain in central domain (here B) |A|+|C|+|D|+...
many mappings (e.g. ax — bz, as — bg,...).

e This can be problematic in large scale environments.



Lustre Reserved UID-space Access Control
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Control data access directly in Lustre MDT-Layer based on:

o Network address (range) e.g. 10.[1-8].1.[1-128]
e Network type e.g. tcp0 or ib0

Lustre Network Ident.

e UID/GID (range) e.g. [0-32000] [100-500]



Lustre Reserved UID-space Access Control (cont.)

e Do not have to specify a mapping for every single UID and
GID. Use ranges e.g. [40000-50000].

e Enforce that UID's and GID’s of reserved space are taken only.

Summary: Access control based on:
e Network address,
e Network type,
e UID, GID

For realizing this approach a Lustre kernel module called
LustreUserGroupAccessControl (short lugac. kO) is developed.



LUGAC Kernel Module Usage

Load/unload module (is automatically loaded by mdt.ko
dependency):

>insmod ./lugac.ko

[12778.295442] GSI Lustre UID/GID access control module lugac.ko version 0.3beta loaded
>rmmod lugac

[12793.754416] GSI Lustre UID/GID access control module lugac.ko version 0.3beta unloaded

Write rules:

>echo "192.168.[67-70].[1-16]@tcp® [500-600] 1012" > /proc/lugac
>echo "10.10.1.1@tcp5 [100-200] [100-200]" > /proc/lugac

Read rules:

>cat /proc/lugac

[13297.755041] Listing GSI Lustre UID/GID access rules
[13297.755049] 10.10.1.1@tcp5 [100-200] [100-200]
[13297.755059] 192.168.[67-70].[1-16]@tcpO [500-600] 1012

Flush (delete) all rules:

>echo "flush" > /proc/lugac

[13402.185049] Deleting all GSI Lustre UID/GID rules
>cat /proc/lugac

Listing GSI Lustre UID/GID access rules:



LUGAC Kernel Module Details

e Access control information are represented as C structs and
stored as nodes in a linked-list. Linux kernel provides linked-list
data-structure for “free” (see #include <linux/list.h>).

struct struct
1l_network_uid_gid_t {...} 1_network_uid_gid_t {...}
struct
A — . .
e o o 1_network_uid_gid_t {...}

typedef struct { struct l_network_uid_gid_t {
gid_t from; l_network_t l_network;
gid_t to; uid_interval_t uid_iv;

} gid_interval_t; gid_interval_t gid_iv;

struct list_head next; };



LUGAC Kernel Module Details (cont.)

Kernel module lugac.ko

parses input strings via /proc/lugac and sets fields in
struct l_network_uid_gid_t,

iterates over linked-list and outputs fields in struct
1_network_uid_gid_t (cat /proc/lugac),

adds struct 1l_network_uid_gid_t into linked-list,
deletes struct 1_network_uid_gid_t from linked-list,

exports a function (allow_access_nugid) which tells
whether:

e Network address,
o Network type,
e UID, GID

is a member (of the interval/range) of the linked list.

is documented with doxygen lugac_module.c#doxygen


http://www.stibor.net/lugac/details/lugac__module_8c.html

LUGAC Kernel Module Integration into Lustre
Only tiny patches in MDT-Layer are required, e.g.

/* lustre/mdt/mdt_open.c */
int mdt_reint_open(struct mdt_thread_info xinfo, struct mdt_lock_handle xlhc)

/* Lugac access control based on nid, uid and gid. */
if (!allow_access_nugid(libcfs_nid2str(mdt_info_req(info)->rq_peer.nid),
uc->uc_uid, uc->uc_gid)) {
CDEBUG(D_INFO,

libcfs,nidZStr(mdt,info,req(info)—>rq,peer.nid),'uc—>uc,uid, uc->uc_gid);
GOTO(out, result = -EPERM);

/* lustre/mdt/mdt_reint.c */
static int mdt_md_create(struct mdt_thread_info *info)

/* Lugac access control based on nid, uid and gid. */
if (!allow_access_nugid(libcfs_nid2str(mdt_info_req(info)->rq_peer.nid),
uc->uc_uid, uc->uc_gid)) {
CDEBUG(D_INFO,

libcfs,nidZStr(mdt,info,req(info)—>rq,peer.nid),'uc—>uc,uid, uc->uc_gid);
GOTO(out_put_parent, rc = -EPERM);

See http://www.stibor.net/lugac/ for documentation and more details.



http://www.stibor.net/lugac/

Other Approaches (UID Mapping)

e FEnabling Lustre WAN for Production Use on the TeraGrid: A
Lightweight UID Mapping Scheme, Joshua Walgenbach et al.,
TeraGrid 2010. For Lustre 1.6.x to 1.8.x. (see
https://projectlava.xyratex.com/show_bug.cgi?id=13479).

o An extended version will be available in Lustre 2.6.0 (see also
LAD'13 Developing UID Mapping and a Stand Alone Security
Mechanism for Lustre: Challenges and Successes).


https://projectlava.xyratex.com/show_bug.cgi?id=13479

Other Approaches (Kerberos Realm Mapping)

e [1] Kerberized Lustre 2.0 over the WAN, Josephine Palencia
et al., TeraGrid 2010.

e [2] Using Kerberized Lustre Over the WAN for High Energy
Physics Data, Josephine Palencia et al., XSEDE 2012.

In Lustre code:

lustre/utils/gss/lsupport.h:#define MAPPING_DATABASE_FILE "/etc/lustre/idmap.conf"

/* lustre/utils/gss/lsupport.c */
static int read_mapping_db(void)

char princ[MAX_LINE_LEN];
char nid_str[MAX_LINE_LEN];
char dest[MAX_LINE_LEN];
char linebuf[MAX_LINE_LEN];
char xline;

lnet_nid_t nid;

uid_t dest_uid;

FILE *f;

/.;.copernicus@ANDROMEDA,GALAXY 10.67.75.100@02ib 1001 */

if (sscanf(line, , princ, nid_str, dest) != 3) {
printerr(0, )i
continue;

See userland tool lustre/utils/gss/I_idmap.c



http://git.whamcloud.com/?p=fs/lustre-release.git;a=blob_plain;f=lustre/utils/gss/l_idmap.c;hb=refs/heads/b2_4

Other Approaches (Kerberos Realm Mapping) Problems

1) Lustre Kerberos code needs to be cleaned up and improved:

thomas@lxdv65:~/lustre>grep -r
lustre/utils/gss/context_mit.c:
lustre/utils/gss/context_mit.c:
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.c:
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
thomas@lxdv65:~/lustre/>
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2) With hardware accelerated crypto instruction set (such as
AES-NI) Lustre Kerberos bottlenecks cf. [1,2] can be attacked.



Summary

A lightweight access control mechanism for Lustre in wide area
domains based on

e Network address,
e Network type,
e UID, GID

is developed.

Drawbacks, constraints and improvements:
Force WAN domains to use predefined UID/GID spaces,

e From perspective of information security (plain IP) not secure
(use IP-Sec as underlying protocol for securing IP).

Employ efficient data-structures such as red-black trees
(#include <linux/rbtree.h>) or hashing functions.

Integrate /proc/lugac into proper Lustre proc namespace.



Outlook

Demand for employing Lustre in WAN is growing!

My personal view to tackle this demand: Cleanup Kerberos code
to supply:
e Strong authentication and encryption by means of Kerberos.

e Kerberos Cross Realm UID/GID mapping and UID/GID access
control.

Thank you & Questions?




