A lightweight access control mechanism for
Lustre in wide area domains

Thomas Stibor
t.stibor@gsi.de

High Performance Computing
GSI Helmholtz Centre for Heavy lon Research
Darmstadt, Germany

Monday 16t September, 2013

LAD’'13 Workshop, Paris, France

mailto:t.stibor@gsi.de

Motivation

Lustre employed in wide area networks (WAN) can result in
UID/GID conflicts (overlaps) and thus in uncontrolled data
modification and deletion.

I

: GSI UID-space |

I
A | . A |
| WAN; : clients | WAN 3 :

I I
; UID-space :/ /lustre \i UID-space |
clients clients
clients

I

i WAN, :

: UID-space |

I

|
For the sake of simplicity GID is omitted here and in some remaining slides.

2 Lustre Reserved UID-space Problem Z,

A B
ai b1
an by
a3 b3
as) b4
d5 | = ﬁ > b5
a6 be
ar by
as bg
dg bg
a10 blO

reserved UID-space

e Users of UID-space A access data in UID-space I3 under their

UID of A.

e Use reserved UID-space, however we have no mechanism to
control whether reserved UID-space is truly employed.

Lustre UID Mapping (Problem)
B

A

ai b1

a bo

as f: A= B / b3 What happens when
as by frequently users are de-
as bs leted, added, etc. and
ag be the mapping is not up-
ar b, dated (keep synchroni-
ag bg zed)?

dg bg

ai0 blO

Suppose each domain A,C,D,... have > 1000 many Lustre users.
We have to maintain in central domain (here B) |A|+|C|+|D|+...
many mappings (e.g. ax — bz, as — bg,...).

e This can be problematic in large scale environments.

Lustre Reserved UID-space Access Control

A

a1

B

a2

by

as

a4

b3

as

a6

ar

as

dg

a10

bg

bio

reserved UID space

Control data access directly in Lustre MDT-Layer based on:

o Network address (range) e.g. 10.[1-8].1.[1-128]
e Network type e.g. tcp0 or ib0

Lustre Network Ident.

e UID/GID (range) e.g. [0-32000] [100-500]

Lustre Reserved UID-space Access Control (cont.)

e Do not have to specify a mapping for every single UID and
GID. Use ranges e.g. [40000-50000].

e Enforce that UID's and GID’s of reserved space are taken only.

Summary: Access control based on:
e Network address,
e Network type,
e UID, GID

For realizing this approach a Lustre kernel module called
LustreUserGroupAccessControl (short lugac. kO) is developed.

LUGAC Kernel Module Usage

Load/unload module (is automatically loaded by mdt.ko
dependency):

>insmod ./lugac.ko

[12778.295442] GSI Lustre UID/GID access control module lugac.ko version 0.3beta loaded
>rmmod lugac

[12793.754416] GSI Lustre UID/GID access control module lugac.ko version 0.3beta unloaded

Write rules:

>echo "192.168.[67-70].[1-16]@tcp® [500-600] 1012" > /proc/lugac
>echo "10.10.1.1@tcp5 [100-200] [100-200]" > /proc/lugac

Read rules:

>cat /proc/lugac

[13297.755041] Listing GSI Lustre UID/GID access rules
[13297.755049] 10.10.1.1@tcp5 [100-200] [100-200]
[13297.755059] 192.168.[67-70].[1-16]@tcpO [500-600] 1012

Flush (delete) all rules:

>echo "flush" > /proc/lugac

[13402.185049] Deleting all GSI Lustre UID/GID rules
>cat /proc/lugac

Listing GSI Lustre UID/GID access rules:

LUGAC Kernel Module Details

e Access control information are represented as C structs and
stored as nodes in a linked-list. Linux kernel provides linked-list
data-structure for “free” (see #include <linux/list.h>).

struct struct
1l_network_uid_gid_t {...} 1_network_uid_gid_t {...}
struct
A — . .
e o o 1_network_uid_gid_t {...}

typedef struct { struct l_network_uid_gid_t {
gid_t from; l_network_t l_network;
gid_t to; uid_interval_t uid_iv;

} gid_interval_t; gid_interval_t gid_iv;

struct list_head next; };

LUGAC Kernel Module Details (cont.)

Kernel module lugac.ko

parses input strings via /proc/lugac and sets fields in
struct l_network_uid_gid_t,

iterates over linked-list and outputs fields in struct
1_network_uid_gid_t (cat /proc/lugac),

adds struct 1l_network_uid_gid_t into linked-list,
deletes struct 1_network_uid_gid_t from linked-list,

exports a function (allow_access_nugid) which tells
whether:

e Network address,
o Network type,
e UID, GID

is a member (of the interval/range) of the linked list.

is documented with doxygen lugac_module.c#doxygen

http://www.stibor.net/lugac/details/lugac__module_8c.html

LUGAC Kernel Module Integration into Lustre
Only tiny patches in MDT-Layer are required, e.g.

/* lustre/mdt/mdt_open.c */
int mdt_reint_open(struct mdt_thread_info xinfo, struct mdt_lock_handle xlhc)

/* Lugac access control based on nid, uid and gid. */
if (!allow_access_nugid(libcfs_nid2str(mdt_info_req(info)->rq_peer.nid),
uc->uc_uid, uc->uc_gid)) {
CDEBUG(D_INFO,

libcfs,nidZStr(mdt,info,req(info)—>rq,peer.nid),'uc—>uc,uid, uc->uc_gid);
GOTO(out, result = -EPERM);

/* lustre/mdt/mdt_reint.c */
static int mdt_md_create(struct mdt_thread_info *info)

/* Lugac access control based on nid, uid and gid. */
if (!allow_access_nugid(libcfs_nid2str(mdt_info_req(info)->rq_peer.nid),
uc->uc_uid, uc->uc_gid)) {
CDEBUG(D_INFO,

libcfs,nidZStr(mdt,info,req(info)—>rq,peer.nid),'uc—>uc,uid, uc->uc_gid);
GOTO(out_put_parent, rc = -EPERM);

See http://www.stibor.net/lugac/ for documentation and more details.

http://www.stibor.net/lugac/

Other Approaches (UID Mapping)

e FEnabling Lustre WAN for Production Use on the TeraGrid: A
Lightweight UID Mapping Scheme, Joshua Walgenbach et al.,
TeraGrid 2010. For Lustre 1.6.x to 1.8.x. (see
https://projectlava.xyratex.com/show_bug.cgi?id=13479).

o An extended version will be available in Lustre 2.6.0 (see also
LAD'13 Developing UID Mapping and a Stand Alone Security
Mechanism for Lustre: Challenges and Successes).

https://projectlava.xyratex.com/show_bug.cgi?id=13479

Other Approaches (Kerberos Realm Mapping)

e [1] Kerberized Lustre 2.0 over the WAN, Josephine Palencia
et al., TeraGrid 2010.

e [2] Using Kerberized Lustre Over the WAN for High Energy
Physics Data, Josephine Palencia et al., XSEDE 2012.

In Lustre code:

lustre/utils/gss/lsupport.h:#define MAPPING_DATABASE_FILE "/etc/lustre/idmap.conf"

/* lustre/utils/gss/lsupport.c */
static int read_mapping_db(void)

char princ[MAX_LINE_LEN];
char nid_str[MAX_LINE_LEN];
char dest[MAX_LINE_LEN];
char linebuf[MAX_LINE_LEN];
char xline;

lnet_nid_t nid;

uid_t dest_uid;

FILE *f;

/.;.copernicus@ANDROMEDA,GALAXY 10.67.75.100@02ib 1001 */

if (sscanf(line, , princ, nid_str, dest) != 3) {
printerr(0,)i
continue;

See userland tool lustre/utils/gss/I_idmap.c

http://git.whamcloud.com/?p=fs/lustre-release.git;a=blob_plain;f=lustre/utils/gss/l_idmap.c;hb=refs/heads/b2_4

Other Approaches (Kerberos Realm Mapping) Problems

1) Lustre Kerberos code needs to be cleaned up and improved:

thomas@lxdv65:~/lustre>grep -r
lustre/utils/gss/context_mit.c:
lustre/utils/gss/context_mit.c:
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.
lustre/utils/gss/context_mit.c:
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
lustre/utils/gss/context_lucid.
thomas@lxdv65:~/lustre/>

XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
XXX Hack alert! XXX Do NOT submit upstream!
:/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
XXX Hack alert! XXX Do NOT submit upstream! XXX =/
/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
/* XXX Hack alert! XXX Do NOT submit upstream! XXX x/
* XXX Hack alert. We dont have legal access to these

c:
c:
c:
c:

¥ KK K K K K ¥

aEsNsNaRaNsNaNaNsl
~
*

2) With hardware accelerated crypto instruction set (such as
AES-NI) Lustre Kerberos bottlenecks cf. [1,2] can be attacked.

Summary

A lightweight access control mechanism for Lustre in wide area
domains based on

e Network address,
e Network type,
e UID, GID

is developed.

Drawbacks, constraints and improvements:
Force WAN domains to use predefined UID/GID spaces,

e From perspective of information security (plain IP) not secure
(use IP-Sec as underlying protocol for securing IP).

Employ efficient data-structures such as red-black trees
(#include <linux/rbtree.h>) or hashing functions.

Integrate /proc/lugac into proper Lustre proc namespace.

Outlook

Demand for employing Lustre in WAN is growing!

My personal view to tackle this demand: Cleanup Kerberos code
to supply:
e Strong authentication and encryption by means of Kerberos.

e Kerberos Cross Realm UID/GID mapping and UID/GID access
control.

Thank you & Questions?

