
Lustre on Flash

LAD 2017 Copyright 2017 Cray Inc.
1

Flash is different.

● Pros (vs spinning disk at same cost):

● Greater bandwidth

● Lower latency (~100x)
● ~100 microseconds vs ~10 milliseconds

● Cons:

● Lower capacity

● Lower lifetimes/endurance

● Logical vs physical block size issues (read-modify-write, trim,
etc)

LAD 2017 Copyright 2017 Cray Inc.
2

Implications for filesystems

● What do you mean by filesystems?
● Significant implications for on disk filesystems and

block I/O subsystems
● Trim support and other issues are important
● Controller and flash improvements mitigate some of

this
● Lots of work done upstream, we benefit

LAD 2017 Copyright 2017 Cray Inc.
3

What about for Lustre?

● Not much. It's just another block device, really.
● It's fast! Fast is nice.
● Lustre already handles high bandwidth OSTs
● It turns out approach used for “Box full of spinning

disks” works well for flash
● Servers are already network limited more than disk

limited

LAD 2017 Copyright 2017 Cray Inc.
4

A little more...

● Lustre is great at extracting all of the bandwidth from
high speed flash arrays

● Minimal overhead: Ldiskfs + LVM gets > 95% of raw
performance

● ZFS also good (or so I hear)
● Issues are much more around building hardware that

can move the data

LAD 2017 Copyright 2017 Cray Inc.
5

What about latency...?

● Flash has much better latency for small I/O (Large I/O
is bandwidth limited)

● ~100x faster
● Good for small random I/O
● 'Chatty' workloads like (some) big data jobs
● Lustre is poor at exposing this: 4k read latency of 500

microseconds on Cray hardware, 80 microseconds is
flash (network latency ~1-5 microseconds)

LAD 2017 Copyright 2017 Cray Inc.
6

Latency → Small I/O

● Latency is only relevant for small I/O
● Small I/O is terrible on spinning disk
● But still pretty bad on flash – Flash can't hit top end

bandwidth with small I/O
● Small I/O creates lots of network traffic
● Classic spinning disk solution:

Don't do small I/O

LAD 2017 Copyright 2017 Cray Inc.
7

Solution: The Page Cache

● Sequential small I/O doesn't have to be small to disk
● Readahead for reads
● Write aggregation for writes
● Lustre doesn't do small I/O to disk (or over network)

unless forced (direct I/O, random reads)
● Works well for flash – Much better than direct I/O

(except for random reads)

LAD 2017 Copyright 2017 Cray Inc.
8

Small I/O Improvements

● Small I/O is still tough, but it’s also important
● High per I/O overhead make it slow even to page cache
● Previous work:

Fast reads from Intel (~10x improvement for 8 byte reads,
helps at all sizes)

● Current/future work:
Tiny writes
Immediate short I/O
Write containers

● See my LAD Developer Summit talk for details

LAD 2017 Copyright 2017 Cray Inc.
9

But... Latency matters!

● Excitement over persistent memory tech is all around
low latency

● Major investments in this area, DAOS-M from Intel,
various related efforts

● And flash latency is 100x better than spinning disk.
Shouldn't we try to unlock that?

● Yes: But we already do all right at that.

LAD 2017 Copyright 2017 Cray Inc.
10

Latency Realms

● Let's talk orders of magnitude.
● Spinning disk: ~10 ms (1*10^-2)
● PFS ~700 ms (7*10^-4)
● Flash ~100 μs (1*10^-4)
● Persistent memory ~1 μs (1*10^-6)
● MPI communication (Aries) ~1 μs (1*10^-6)
● 1000 CPU cycles (4 Ghz CPU) ~0.25 μs (0.25*10^-6)

LAD 2017 Copyright 2017 Cray Inc.
11

Latency Pies

LAD 2017 Copyright 2017 Cray Inc.
12

93.46%

6.54%

High Latency: Spinning Disk + PFS (10 milliseconds)

Spinning Disk
PFS

73.68%

15.79%

10.53%

Medium Latency: PFS + Flash (~1 millisecond)

Spinning Disk
PFS
Latency Optimized
PFS
Flash

Latency Pies

LAD 2017 Copyright 2017 Cray Inc.
13

59.46%

39.64%

0.40%0.40%0.10%

Low Latency: Flash + Optimized PFS (~250 μs)

Spinning Disk
PFS
Latency Optimized
PFS
Flash
Persistent Memory
MPI communication
1000 CPU cycles

44.44%

44.44%

11.11%

True Low Latency: Persistent Memory, MPI, CPU (~2.5 μs)

Spinning Disk
PFS
Latency Optimized PFS
Flash
Persistent Memory
MPI communication
1000 CPU cycles

Spinning Disks and Application Design

● Application design reflects latency realms
● MPI & compute broadly comparable (~1 μs)
● I/O incredibly slow (Spinning disk ~10,000 μs)
● Interleave compute & communication, but wait and do

I/O in large chunks
● Compute, MPI, compute, MPI… (repeat)

Do I/O
Compute, MPI, compute, MPI… etc

LAD 2017 Copyright 2017 Cray Inc.
14

Medium latency I/O & application design

● Flash + Lustre best case latency is ~500 μs
● Compare to ~10,000 μs for spinning disk + Lustre
● Better not to do small random I/O, but some

applications have no choice (big data)
● Flash is very helpful for this, giving a ~10x

improvement with Lustre
● Even though Lustre is now the main source of latency,

it’s still a huge improvement

LAD 2017 Copyright 2017 Cray Inc.
15

Should we redesign for flash?

● Flash latency is ~100x better (100 μs)
● But still 100x slower than MPI (1 μs)
● Still can't interleave I/O with compute +

communication
● So… Probably not.
● Persistent memory is different: 1 μs
● Can now interleave:

Compute, MPI, store, compute, MPI, store...

LAD 2017 Copyright 2017 Cray Inc.
16

The Future

● Persistent memory really is different, will enable new
application designs

● POSIX compliance isn’t really possible in available
time (~1 μs)

● Lustre can't be the enabling tech there, hence projects
like DAOS-M

● But Lustre can unlock the potential of flash

LAD 2017 Copyright 2017 Cray Inc.
17

The Future (2)

● “The future is seldom the same as the past” - Seymour
Cray

● Seldom, but not always… and Lustre is still changing.
● Lustre is still the future of parallel file systems, still the

right answer as we move to flash as primary
● DAOS-M and similar projects are something new

(Post-POSIX)

LAD 2017 Copyright 2017 Cray Inc.
18

	Agenda
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

