
Lustre Administrators & Developers Workshop 2022

LDISKFS Block Allocator Problems and Solutions

ablagodarenko@whamcloud.com

whamcloud.com2

LDISKFS Multi-Block Allocator (mballoc)

Ext4 has quite sophisticated block allocation optimization subsystem
Multi-block buddy allocator efficiently allocates large chunks of space

Buddy allocator is used if:
• File size is bigger than s_mb_stream_request (64KB)
• Group preallocation can’t find required blocks
• Required blocks are not found in inode preallocation list
• Required blocks are not found in locality group realloc space

Allocator tries to preallocate as many blocks possible within the
preallocation window

whamcloud.com3

There is No Limit to Perfection

• Some performance drop when a
target is about to be filled

• Too much metadata: slow mount

• Uses free space at end of disk (slow)
when space at start is available

LDISKFS
allocator

• Files are spread across the target
after optimization

• Last groups have more priority than
first one

New upstream
Ext4 allocator

- not a problem for flash drives though

whamcloud.com4

Allocation Window
Unfragmented vs. fragmented

Allocator scans whole disk trying to find large-enough contiguous range of blocks.
As disks become larger - the problem becomes increasingly visible.

Allocation window

whamcloud.com5

Allocation Window Tuning

/proc/fs/ldiskfs/<dev>/mb_groups

Script

/proc/fs/ldiskfs/<dev>/prealloc_table

mballoc optimization

Preallocation window

[2ˆ0 2ˆ13]
[0 1 1 0 0 1 0 1 1 1 1 0 0 0]
[1 0 1 1 2 2 1 1 3 1 1 1 0 0]
[0 0 0 0 0 1 0 0 1 0 0 1 0 0]

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 2 4 8 16 32 64 128 256 512 1024

offset + requested size = 3000

Normally requested 4096, but limited to 1024

prealloc_tableshould be adjusted
periodically to adjust current state

whamcloud.com6

4-pass Group Selection Loops

4 loops across all block allocation groups

• cr = 0, want only aligned 2^n-block chunks
• cr = 1, average free chunk has enough blocks
• cr = 2, group has enough free blocks
• cr = 3, use any free blocks (fragment)

Based on the file size requested (offset +
requested size) block count is rounded to
the nearest large block range e.g.: (16K,
32K, 64K, 128K, 256K, 512K, 1M, 2M, 4M,
8M etc. - prealloc_table)

want X
blocks

found
group

в
Good group

is found?

no

no

no

no

cr=0

cr=1

cr=2

cr=3

yes

yes

yes

yes

whamcloud.com7

Some performance drop when a target is close to full

want X
blocks

found
group

Loop 0

Loop 1

Loop 2

Loop 3

Start here is >75% of
disk is filled

Start here is >85% of
disk is filled

Start here is >95% of
disk is filled

Echo "25"> /sys/fs/ldiskfs/<dev>/mb_c1_threshold
Echo "15"> /sys/fs/ldiskfs/<dev>/mb_c2_threshold
Echo "5"> /sys/fs/ldiskfs/<dev>/mb_c3_threshold

Based on filesystem
fullness condition

Force mballoc to skip (likely) useless scanning loops

Loops skipping solution

whamcloud.com8

Set mb_cX_threshold Permanently (LU-14305)

lustre/tests/llmount.sh

cat /sys/fs/ldiskfs/loop1/mb_c1_threshold

25

tunefs.lustre /dev/lustre-ost1

...

Parameters: mgsnode=192.168.56.102@tcp sys.timeout=20

umount /dev/lustre-ost1

tunefs.lustre --mountfsoptions="errors=remount-ro,mb_c1_threshold=45" /dev/lustre-ost1

...

Persistent mount opts: errors=remount-ro,mb_c1_threshold=45

Parameters: mgsnode=192.168.56.102@tcp sys.timeout=20

mount -t lustre /dev/lustre-ost1 /mnt/lustre-ost1

cat /sys/fs/ldiskfs/loop1/mb_c1_threshold

45

lctl set_param –P
mb_cX_threshold support is planned
LU-16040 as particular case
of /sys/fs/ldiskfs and
/proc/fs/ldiskfs support

https://jira.whamcloud.com/browse/LU-16040

whamcloud.com

How to diagnose allocator problems

► Too low free space threshold avoids heuristics

► Causes excessive scanning of full groups

cat /proc/fs/ldiskfs/<dev>/mb_stats |
grep useless

useless_c1_loops: 0
useless_c2_loops: 0
useless_c3_loops: 0

/sys/fs/ldiskfs/<dev>/mb_c1_threshold:15
/sys/fs/ldiskfs/<dev>/mb_c2_threshold:10
/sys/fs/ldiskfs/<dev>/mb_c3_threshold:5

cat /proc/fs/ldiskfs/<dev>/mb_stats |
grep useless

useless_c1_loops: 1343197
useless_c2_loops: 2520822
useless_c3_loops: 0

/sys/fs/ldiskfs/<dev>/mb_c1_threshold:4
/sys/fs/ldiskfs/<dev>/mb_c2_threshold:3
/sys/fs/ldiskfs/<dev>/mb_c2_threshold:1

whamcloud.com

It is better to allocate at the beginning of the disk

►pdsh –g oss 'cat /proc/fs/ldiskfs/*/mb_last_group' | sort

► obdfilter shows 30% performance drop for OSTs with high mb_last_group

►Spinning hard drive is faster at the start and up to 40% slower at the end

►echo 0 > /proc/fs/ldiskfs/*/mb_last_group

mb_last_group

allocated and freed

whamcloud.com11

Tuning mb_last_group solution

mb_last_group = 0

No free blocks ranges at the start of the disk

/proc/fs/ldiskfs/*/mb_groups

Heuristic algorithm

/proc/fs/ldiskfs/*/mb_last_group

Solution based on the
new block allocator

from LU-14438

whamcloud.com12

Too much metadata: slow mount (LU-12988)

• mballoc maintains internal in-memory structures (buddy cache) to
speed up searching

• cache is built from regular on-disk bitmaps
• if cache is cold, reading it may take a lot of time
• during Lustre server startup few small files need to be updated

(e.g. config backup)
• at this point buddy/bitmap cache is empty but mballoc wants to find

a big chunk of free space for group preallocation and reads bitmaps
one by one

• sometimes this can take a very long time

whamcloud.com13

Slow mount optimization fix (LU-15319)

if (cr < 2 && !ext4_mb_uninit_on_disk(ac->ac_sb, group))
return 0;

ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);

LU-13291 "ldiskfs: mballoc don't skip uninit-on-disk groups"
suggests to skip initialized groups at cr < 2 rather than read them into memory

Separate thread uploads buddy data at the same time, but do it behind cr0 loop at the mount

After the first allocation
mb_last_group continues from
this place that is too far from the
beginning.

Enough free space

Uninitialized groupsInitialized groups

mb_last_group

whamcloud.com14

mb_last_groupheuristics (LU-16162)
Useless case, to portray behavior: klta_rate = 100
e.g., if 22% of blocks filled, allocator jumps to group 0 when 22% scanned

Free space

Default configuration: klta_rate = 25
If 22% of blocks filled, allocator jumps to group 0 when 88% of groups scanned

Example with klta_start: klta_rate = 25, 10% of blocks filled
If chosen group < klta_start, then do not jump to group 0 until klta_start hit

klta_start,
minimum groups to scan

whamcloud.com15

The New One Ext4 block allocator: mb_optimize_scan

Nil

Nil Nil

Nil
Nil

Nil
Nil

NilNil

Nil

Nil

13

178

1 11 15 25

6 22 27

for cr0 there is a list for each
order of free chunks in
group for O(1) lookup

for cr1 currently is a red-black
tree of groups sorted by average
free blocks size for O(log2) lookup

LU-14438 https://lwn.net/Articles/849511/

Group N Group M4Kib:

Group N Group M8Kib:

Group N Group M128 Mib:

whamcloud.com16

Free space used at end of disk and this space is too slow

Groups from start of disk
should instead be used

for allocations first.

Block groups currently
added at start of list,

means they will be used
from last group to first!

2ˆn list

2ˆn list

2ˆn list

Block groups are added to an array list from first to the last group

whamcloud.com17

Files too spread across disk with mb_optimized_scan

"The new allocator strategy spreads allocations over more block groups, we end
up with more open erase blocks on the SD card which forces the firmware to do
more garbage collection and RMW of erase blocks and write performance tanks..."
- linux-ext4posting

Upstream ext4 patches underway to fix mb_optimize_scan:
• Make mballoc try inode local group first even with mb_optimize_scan
• Avoid unnecessary spreading of allocations among groups
• Array of groups sorted by average fragment size for cr2 instead of rbtree

Proposals to further improve performance:
ext4: Multiple arrays or skip lists for groups to bias allocations to start of disk

whamcloud.com18

Work in progress

The new Ext4 block allocation algorithm after bug fixing looks
good and will be ported to Lustre FS LDiskFS backend soon.

ablagodarenko@whamcloud.com

Thank you!

