
Data Mobility in HPC Storage

Torben Kling Petersen, PhD
Distinguished Technologist
Lead HPC Storage Architect - EMEA & APAC

THE ”NEW” WORLD – TIERED STORAGE SOLUTIONS (ON PREM OR OFF ...)

Compute Archive

Compute system
CPU or CPU/GPU

Parallel File Systems
• Lustre
• Spectrum Scale
• NVMe-oF

Hybrid systems
(NVMe and HDD)

Data placement
Data movement

Persistent Memory
(e.g 3D Xpoint)

Tape

Cloud Storage

Data Lake
(e.g., Ceph,
Ezmeral DF)

Zero Watt Storage

Data Management Framework

RDMA
RoCE

TCP

IB/Eth/SlingShot

RDMA
RoCE

TCP

IB/Eth

Single Virtual NameSpace

PCC/LROC

Why do we need Data Mobility?

3

• Data management challenges are
exacerbated in HPC

• Data is unstructured and is not managed
by business systems: e.g. data base,
email

• Data created by many sources:
applications, sensors, technical
instruments

• Data at volume, commonly in tens of
petabytes

• Data exists in several states: e.g. hot,
warm, cold

• Data has a blast radius that includes
versions and recovery copies

• We need data management to:
- Reduce the Total Cost of Curation
- Inventory/locate data
- Relocate data

Application Performance
Storage

Application Access
Storage

Scratch
Storage

Campaign
Storage

Data Lake

Fast Recovery
Storage

Cost optimized Recovery
Storage

Global
Data Management

File system
Data Management

Intra File System Data Mobility

4

INTRA FILE SYSTEM DATA SERVICES OVERVIEW

• Improved use of New Lustre Features
• Cohesiveness
• Reduce complexity for users
• No more component soup

• Scale
• Move beyond scale limits of current solutions
• Target petascale to exascale

• Integration
• Direct integration with Lustre
• Built-in management and monitoring
• Workflow integration through workload managers

Data Services

Lustre Core
Features

DoM

PFL

FLRD
at

a
M

an
ag

em
en

t

Search

A
ut

om
at

io
n

Indexing

Policy
management

Scalable
Search
Engine

Data Movers
Data Movers

Data Movers
Data Movers

Metadata

Tier 2
Disk

Tier 1
Flash

Embedded
Index

extensions

Lustre namespace

Administrator

User

Tiering Engine

OSS/OST
OSS/OST

OSS/OST
OSS/OST

OSS/OST
OSS/OST

OSS/OST
OSS/OST

Lustre solution Data Services
(K8s Cluster)

User query

Workload
Manager

“Within the file system”
tiering and file search index
for active data

Enables I/O acceleration
for HPC jobs
• Purpose-built for Lustre
• Embedded FS Index
• Optimized search
• Customizable policies
• Data movement via policy,

CLI or WLM*
• Scale out data movers

Data Services

Data Management Framework
ZeroWatt Storage

Tape Media

DMF Data Distribution Cloud & S3
Secondary Facility

Software defined, multi-tiered
storage solution

Ø Integrated Backup & DR
Ø File Versioning
Ø Stage/de-stage data from ephemeral

namespace
Ø Hierarchical Storage Management
Ø Policy controlled data

placement/movement

* Being discussed

query, summary

DATA SERVICES SCALABLE SEARCH*

• A better way to search…
• Linear search is too slow
• Singular search database is unwieldy
• Scalable within a tree and across trees

• Distributed search
• Distributed indices across file system
• Parallel cross file system search
• Summarization of trees to optimize search
• Adheres to POSIX permissions for search

• Queries & Reports
• Rapid generation of full reports based on any searchable criteria
• Fully scriptable queries on usage based on users, groups etc.
• Use standard sql syntax

* See Nathan Rutman’s presentation “Fast Scanning and Scalable Search” from LAD2019

POLICY ENGINE

• A policy defines an action to be taken on set of candidate files that match a set of selection criteria
• Requires a triggering event, such as a particular state of the filesystem or a simple timer
• Uses established RobinHood syntax

fileclass largeflash {
definition { size > 100MB and pool = flash}

}

flash_maintenance_rules{
rule migrate_large {

target_fileclass = largeflash;
action = migrate;
action_params {

template = .cray/cds/template/disk_pool;
}
condition { last_access > 2d }

}
}
trigger FM policy if any OST in pool 'flash' exceeds 85% of disk usage.
flash_maintenance_trigger {

check_interval = 600;
trigger_on = pool_usage(flash);
high_threshold_pct = 85%;

}
define_policy flash_maintenance {

default_action = migrate;
}

QUERY – FILE PURGING

• Essentially a query with added delete

client# /opt/cray/brindexer/bin/query -q "select %s from %s where size > 30000" --delete /lus
Delete file:/lus/next copy/myfile
Delete file:/lus/next copy/3file
Delete file:/lus/next copy/another
Delete file:/lus/tiny/onefile-0
Delete file:/lus/tiny/onefile-0
Delete file:/lus/next/3file
Delete file:/lus/next/another
Delete file:/lus/next/myfile
Delete file:/lus/level1/level2/tiny copy/onefile
Delete file:/lus/level1/level2/tiny copy/onefile-0
Delete file:/lus/next copy/tiny/onefile-0 copy
Delete file:/lus/next copy/tiny/onefile-0
Delete file:/lus/tiny/next/3file
Delete file:/lus/tiny/next/another

client# /opt/cray/ /brindexer/bin/query -q "select %s from %s where name like ‘%%.tmp’ and atime > 86400" --delete /lus
Delete file:/lus/next copy/myfile.tmp
Delete file:/lus/next copy/3file.tmp
Delete file:/lus/next copy/another.tmp
Delete file:/lus/tiny/onefile-0.tmp
Delete file:/lus/tiny/onefile-0.tmp
Delete file:/lus/next/3file.tmp
Delete file:/lus/next/another.tmp
Delete file:/lus/next/myfile.tmp
Delete file:/lus/level1/level2/tiny copy/onefile.tmp
Delete file:/lus/level1/level2/tiny copy/onefile-0.tmp
Delete file:/lus/next copy/tiny/onefile-0 copy.tmp
Delete file:/lus/tiny/next/another.tmp

• Lustre client – sends data movement requests
via the ClusterStor Emitter software, running on
the Metadata Servers (MDS)

• API Agent – provides a RESTful interface to
initiate and data movement requests from Lustre,
command-line tools, etc.

• Policy Engine – processes policies defined as text
files (RobinHood syntax) and initiates data
movement and other operations through the
Tiering Engine

• Tiering Engine – processes data movement and
indexing actions; orchestrates the Data Movers
(Connector)

• Scalable Data Movers (aka Connector)–executes
data movement requests issued by the Tiering
Engine via standard Lustre client

SOFTWARE ARCHITECTURE

Inter File System Data Mobility

11

Data management solution for parallel storage across heterogenous namespaces
DATA MANAGEMENT FRAMEWORK

Robotic Tape Library Zero Watt Storage

External NAS

Accessible Tier—Front End Namespaces

Recovery Tier—Backend Repositories

Changelog
Scalable Search

Metadata Policies

Objects & Versions Replication & RetentionParallel Data Movers

Replicate

Other backendObject & Cloud Storage

GPFS
policy engine

Advanced
data services

Scality Ring

HPSS OpenVault

13

CORE TECHNOLOGY FRAMEWORKS

• Cassandra Database
• Distributed NoSQL DMBS for big data
• HA with no Single Point Of Failure
• Tunable Consistency

• Redis
• Distributed in-memory key-value store
• Foundation for AnyQ – DMF Queueing Framework

• Spark
• Policy Engine with Custom DSL
• Distributed Metadata Queries

• Kafka
• Changelog Event Processing for GPFS and EXFS
• Filesystem Synchronous Event Processing

• Mesos
• Cluster Management Framework (used by Spark)
• Task-based Application Framework with Scheduler API
• Partial Containerization in DMF

14

To More Advanced Data Management
EVOLVING DMF

Manage more data workflows

• Retains transparent tiering (HSM)
• Captures and stores filesystem metadata
• Provides metadata queries
• Provides metada-driven policies

• Versions data
• Can destage files and stage data from

backend into filesystems
• Configures and creates namespaces
• Delivers scalability and HA

• Modular architecture – can accommodate
multiple filesystem types (currently Lustre,
GPFS, EXFS, Generic POSIX, and S3)

Filesystems

Data MoversPolicy Engine

File

Object

Metadata

Cassandra

Changelog

Storage Backends

60 3rd party RPMs
61 DMF7 RPMs
1638 files
262243 loc

• For Lustre:
• Natively process Lustre persistent change log via API
• Policy engine and filesystem reflection directly out of DMF7

scale out database without needing RobinHood

• Other filesystems support:
• Makes DMF front-end filesystem independent

• Persistent message bus use depends on filesystem API
• Any POSIX filesystem can be simply re-scanned at any time
• Unified DMF policy engine for all filesystem types

• For HPE XFS & IBM Spectrum Scale:
• Use DMAPI events to drive filesystem change log and filesystem

reflection
• Buffer filesystem events in scalable persistent message bus (Kafka)
• Removes the need to scan the filesystem to drive the policy engine
• Removes the need to backup (e.g. xfsdump) the filesystem to

preserve the namespace

DMF 7 NAMESPACE REFLECTION & CHANGE LOG

HPE XFS HPE XFS Event
Filter Persistent

Message Bus
Change Log
Processor

DMF DB
Reflection

IBM Spectrum
Scale

GPFS
Event Filter

Lustre Persistent
Change Log

Any POSIX
Filesystem

DMF POSIX
Scanner

Future
Filesystem

Future FS API

16

Architecture

17

SUMMARY

• Automated and resilient tools for data mobility (both intra and inter filesystem) is key to growth.
• One size does not fit all ...

• Modular deployment
• Add-ons rather than monolithic

• Extensive user customization
• Policy driven data mobility

• Database or not ??
• Casandra vs index files

18

THANK YOU

(for listening to a madmans ramblings ….)

19

tkp@hpe.com

