
Network Request Scheduler (NRS)

LAD ’12, Paris, France

Nikitas Angelinas

nikitas_angelinas@xyratex.com

2

Agenda

 NRS background

 SMP scaling considerations for NRS

 SMP scaling test results

 Misc

 Future tasks

3

Foreword

NRS is a collaborative project between Intel and Xyratex

Code is at Intel's Gerrit server

Jira ticket LU-398

Targeting Lustre version 2.4

No regressions for functionality equivalent with current, non-NRS code

Testing indicates some beneficial use cases

Needs further large-scale testing and reviewing

Need to decide which SMP scaling (LU-56) NRS adaptation to merge

4

Concept

NRS allows the PTLRPC layer to reorder the servicing of incoming RPCs

We are mostly interested in bulk I/O RPCs for now

Solely server-based for now

RPC

LNET

PTLRPC service

without NRSRPC RPC RPC RPC RPC

RPCRPC RPC RPC RPC RPC

PTLRPC service

with NRS

5

Motivation

 Increased fairness amongst filesystem nodes, and better utilization of resources

Avoid starvation of clients

Load-balance RPCs across OSTs

Better network utilization

 Increased read throughput across the filesystem

Order brw RPCs according to their logical or physical offsets

Allows to reduce the amount of disk seeks in some cases

 Future applications; potentially based on future NRS framework revisions

Vary # of RPCs in flight depending on # of clients doing I/O

Other possibilities

6

NRS policies

A binary heap data type is added to libcfs

Used to implement prioritized queues of RPCs at servers

Sorts large numbers of RPCs (10,000,000+) with minimal insertion/removal overhead (<2 usec)

FIFO - Logical wrapper around existing PTLRPC functionality

Is the default policy for all RPC types

CRR-E - Client Round Robin, RR over exports

CRR-N - Client Round Robin, RR over NIDs

ORR - Object Round Robin, RR over backend-fs objects, request ordering on logical or

physical offsets

TRR - Target Round Robin, RR over OSTs, request ordering on logical or physical offsets

Other policies may be useful

7

ORR/TRR policies

ORR serves bulk I/O RPCs in a Round Robin manner over available backend-fs objects

RPCs are placed in per-object groups of 'RR quantum' size; lprocfs tunable

Sorted within each group by logical of physical disk offset

ldiskfs physical offsets are calculated using extent information obtained via fiemap calls

Support for OST_READ and/or OST_WRITE RPCs; lprocfs tunable

TRR is equivalent, but schedules RPCs in a Round Robin manner over available OSTs

The main aim is to minimize disk seek operations, thus increasing read performance

TRR may help with load balancing across OSTs

ORR/TRR may take advantage of temporal and spatial locality

8

Framework features

 Allows to select a different policy for each PTLRPC service

Separate policy on HP and normal requests

 Policies can be hot-swapped via lprocfs, while the system is handling I/O

 Policies can fail in handling a request

Intentionally or unintentionally

A failed request is handled by the fallback, FIFO policy

FIFO cannot fail the processing of an RPC

9

SMP scaling considerations

MDS with CPTs performs much better; likely OSS with CPTs shows an improvement

NRS needs to be able to work well in multi-CPT servers

Central scheduling entity (NRS) vs partitioned RPC handling (SMP scaling)

Possible NRS implementations

Scheduler per CPT

Scheduler per service (one for all CPTs)

Concerns

First option will inhibit the ability of NRS policies to enforce request ordering

Second option may defeat some of the benefits of having CPTs

In some cases may cause underutilization of some CPTs

Take CPT # into account during scheduling (not implemented yet)?

Need to test each NRS policy in a variety of CPT configurations

10

TRR policy RPC distribution (TRR quantum = 8), NRS per CPT

 CPTs = 1 CPTs = 2 CPTs = 4

11

CRR-N policy RPC distribution (14 clients), NRS per CPT

 CPTs = 1 CPTs = 2 CPTs = 4

12

TRR policy tests

CPT table defined using 'cpu_npartitions' libcfs parameter; using all available CPUs

Performance is compared between FIFO and TRR for different CPT configurations

Using physical offset ordering, TRR quantum = 256

IOR read test; each IOR process reads 16 GB of data in 1MB transfers

FPP and SSF, stripped directories

Client kernel caches cleared between reads

1 Xyratex CS3000, single-SSU (2 OSSs)

Only 14 clients, read operations generate few RPCs

Using ost_io.threads_max=128 on both OSS nodes

The OSS nodes are not totally saturated with this configuration

13

FPP Read - NRS per CPT

1 2 4
2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

NRS per CPT

FPP

FIFO - non CPT TRR - non CPT FIFO - per CPT TRR - per CPT

of CPTs

M
B

/s
e

c

14

FFP Read - One NRS for all CPTs

1 2 4
2000

2200

2400

2600

2800

3000

One NRS for all CPTs

FPP

FIFO - non CPT TRR - non CPT FIFO - one NRS TRR - one NRS

of CPTs

M
B

/s
e

c

15

SSF Read - NRS per CPT

1 2 4
2000

2200

2400

2600

2800

3000

NRS per CPT

SSF

FIFO - non CPT TRR - non CPT FIFO - per CPT TRR - per CPT

of CPTs

M
B

/s
e

c

16

SSF Read - One NRS for all CPTs

1 2 4
2000

2200

2400

2600

2800

3000

One NRS for all CPTs

SSF

FIFO - non CPT TRR - non CPT FIFO - one NRS TRR - one NRS

of CPTs

M
B

/s
e

c

17

Notes on ORR and TRR policies

ORR and/or TRR may help improve:

Some generic read use cases

Small and/or random reads

Widely striped file reads

Backward reads

Cases in which OSTs are underutilized; this has not been tested yet

Reads by aligning writes

ORR will need an LRU-based or similar method for object destruction; TRR much less so

TRR and ORR should be less (if at all) beneficial on SSD-based OSTs

18

Increase read performance by aligning writes

 Possibly increase read performance by aligning writes

 Write performance takes a hit

 But this may be useful in read-mostly or read-important cases

 Quick, small scale test
Again 14 clients, 1 CS3000 (with 2 OSS), ost_io.threads_max = 128, stripped directories

Test policy writing policy reading write (MB/s) read (MB/s)

FPP

FIFO FIFO 2013.72 2735.63

ORR (log, 256) FIFO 1074.25 3937.05*

ORR (log, 256) ORR (phys, 256) 1074.25 3966.07*

SSF

FIFO FIFO 2094.56 2832.48

ORR (log, 256) FIFO 1115.28 3226.53

ORR (log, 256) ORR (phys, 256) 1115.28 3186.26

* value is >> quoted system maximum

19

Future tasks

Need to test the policies at scale with different CPT configurations

Test on large NUMA servers

Perhaps with CPT-enabled libcfs_heap

Decide on the best SMP scaling-enabled adaptation

Test with ZFS backend and OSD-restructured servers

Possibly update for ZFS

Two or more policies working at the same time could be useful

Merge PTLRPC service and NRS request stats

NRS policies as separate kernel modules

Is there a way to improve write performance using NRS?

Investigate other possible applications

Nikitas Angelinas

nikitas_angelinas@xyratex.com

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

