
1©Bull 2012

Centralized Lustre
monitoring on Bull
platforms

Florent THERY

Parallel File Systems
Extreme Computing R&D

September 16, 2013

2©Bull 2013

Agenda

Bull Extreme Computing

Goals of our approach

Architecture and chosen metrics

Expected benefits

3©Bull 2013

Bull Extreme Computing

Actor of the HPC market
1st european manufacturer
Several “high-scale” supercomputers
delivered in 2013
– MeteoFrance

 Direct Liquid Cooling (DLC) technology
 first “full CPU” system at green500

– Sara, Dresden, IT4I

Contributor to Lustre development
EOFS founding member
Integrator of lustre 2.1, 2.4, incoming 2.5
Many bugs reported and patches submitted
Working on Lustre static code analysis project

4©Bull 2012

Goals of our approach

5©Bull 2013

Lustre monitoring complexity

The devil is in the detail
/proc holds all the needed information, but ..

Metrics are spread over a multitude of nodes and devices

Aggregating and visualizing this information is not an easy
work

How to detect an abnormal situation ?
Normality depends on the observer's point of view

Hard to find a generic algorithm for all situations

Need to define configurable and flexible mechanisms to
adapt to several contexts

6©Bull 2013

Bull Lustre monitoring goals

General goals and constraints
Collect data and display graphs for lustre targets, nodes
and filesystems

Raise alerts based on administrator's configured
thresholds

Easy integration in current Bull HPC software base

7©Bull 2013

Bull Lustre monitoring goals

Functional objectives
Three main usability objectives:
– live visualization (based on graphs and alerts system)

→ “OSTxxxx is close to space saturation, 6 hours left if the
current workload goes on like this, I need to do something now”

– backward analysis (based on graphs)
→ “Two days ago, the request mean wait time on node ossX has
exploded while the number of requests per second remained stable,
what happened ?”

– easy to configure alerts system
→ “When node zzz has crashed, the number of RPC/s was so high, I
need to setup a threshold to be notified if it reproduces”

→ “I'm expecting a huge metadata load in the next few days, I must
increase metrics xxx and yyy threshold values”

8©Bull 2012

Architecture and chosen metrics

9©Bull 2013

Bull Lustre monitoring architecture

Collected data flow through collectd mechanism
Alerts flow through syslog-ng, SEC and nagios
Data are stored and displayed on the management node

General overview

Management nodeI/O node

collectd

RRD files

collectd

nagios
interface

collection3
CGI interfacelustre plugin

daemon

network plugin

syslog-ng

daemon

network plugin

rrdtool plugin

syslog-ng

SEC rules

Collectd traffic

RRD extraction

Alerts traffic

SEC engine

lustrefs plugin

10©Bull 2013

Bull Lustre monitoring architecture

Metrics collection and display
Metrics are collected on each I/O node for each OST/MDT
target

→ 1 RRD file generated per “target” metric

Two sources for data aggregation
– lustre plugin on I/O nodes

→ aggregate and store “node” data
→ 1 RRD file generated per “node” metric

– web CGI script on management node
→ display “target” and “node” data
→ aggregate and display “filesystem” data from “target” RRD files

11©Bull 2013

Bull Lustre monitoring architecture

Collected metrics

Metric Lustre Node Type One graph displayed per:
(Target, Node, Filesystem)

Read/Write bandwidth OSS Target, Node, Filesystem

Read/Write IOPS OSS Target, Node, Filesystem

I/O size OSS Target

Request mean wait time OSS Node

RPC/s OSS (I/O requests)
MDS (metadata requests)

Node

Disk usage OSS, MDS Target, Filesystem

Inode usage MDS Target, Filesystem

Metadata operations/s MDS Target

Clients connected MDS Target

12©Bull 2013

Bull Lustre monitoring architecture

Thresholds
Thresholds setup is performed through configuration files on
each I/O node
– by default, no thresholds, must be activated and configured by

administrator

Thresholds are checked in two places
– lustre plugin on I/O nodes

→ check “target” and “node” thresholds

– lustrefs plugin on management node
→ aggregate and check “filesystem” thresholds from “target” RRD files

Overtaken threshold means syslog warning message
→ SEC engine matches it and pushes an alert to nagios.

So far, only maximum thresholds supported

13©Bull 2013

Bull Lustre monitoring architecture

Currently defined thresholds

Threshold name Scope Unit

oss_requests_per_second OSS Absolute value

oss_requests_waittime OSS Micro-seconds

iops_per_ost OST Absolute value

iops_per_oss OSS Absolute value

ost_disk_usage OST Percentage

mds_requests_per_second MDS Absolute value

mdt_disk_usage MDT Percentage

mdt_inode_usage MDT Percentage

fs_disk_usage Filesystem Percentage

fs_iops Filesystem Absolute value

14©Bull 2012

Expected benefits

15©Bull 2013

Use case

Job xxx takes too long to finish compared to
yesterday, what's happening ?

16©Bull 2013

Use case

– “Mhm, bandwidth is low, but about the same on all OSTs.
What about IOPS ?”

17©Bull 2013

Use case

– “OST0003 handles nearly 150 IOPS while other OSTs are
handling between 5 and 6. Weird, isn't it ?
Let's have a look at the I/O size ..”

18©Bull 2013

Use case

– “Gosh ! Why is OST0003 request size only 40k ???
Hum, that explains the number of IOPS treated on this OST.
clush -w lama7 'give me -a reason'”

19©Bull 2013

Future work

Testing at scale
Figure out the impact on I/O nodes CPU/memory
consumption
Evaluate current metrics relevance
Evaluate RRD databases relevance for data storage

Enhancement directions
Add support for job_stats lustre feature
Study a more user friendly graphs display mechanism
Extend thresholds possibilities
– min values
– more automatic cross-referencing schemes

20©Bull 2013

Conclusion

Don't expect exact figures !
– not a performance measurement tool
– helps analysis and prevention of odd behaviours

Facilitate information cross-reference
– e.g. easy to compare OSTs bandwidth values

Uses recognized tools in HPC world

Easy configuration and extensibility

21©Bull 2012

22©Bull 2013

Appendix 1

Metrics retrieval

Metric Where do we get information

Read/Write bandwidth
Read/Write IOPS
I/O size

/proc/fs/lustre/obdfilter/<ost label>/stats
Entries “read_bytes” and “write_bytes”

Request mean wait time /proc/fs/lustre/obdfilter/ost_io/stats, entry “req_waittime”

RPC/s OSS: /proc/fs/lustre/OSS/ost_io/stats, entry “req_waittime”
MDS: /proc/fs/lustre/mds/MDS/mdt/stats, entry “req_waittime”

Disk usage MDS: /proc/fs/lustre/osd-ldiskfs/<mdt label>/{kbytestotal & kbytesfree}
OSS: /proc/fs/lustre/obdfilter/<ost label>/{kbytestotal & kbytesfree}

Inode usage /proc/fs/lustre/osd-ldiskfs/<mdt label>/{filestotal & filesfree}

Metadata operations/s /proc/fs/lustre/mdt/<mdt label>/md_stats
Entries: open, close, mknod, unlink, mkdir, rmdir, rename, getattr, setattr,
getxattr, link, statfs

Clients connected A = /proc/fs/lustre/mdt/<mdt label>/num_exports
B = Number of non-clients connected to the MDT (count uuids in
/proc/fs/lustre/mdt/<mdt label>/exports/* matching the regular
expression: /^([\w-]+)-(OST|MDT).*/
Nbclients = A – B – 1

23©Bull 2013

Appendix 2

RRD files
RRD files loose precision over time, but ..

RRD files keep a fixed size over time

One or more archives are created inside the file with
different resolutions
– Default collectd “rrdtool” plugin archives:

 Last week archived with a resolution of 5 minutes
 Last month archived with a resolution of 35 minutes
 Last year archived with a resolution of 435 minutes

RRD file size with resolution and history above
 with 1 variable saved: 172KB
 with 2 variables saved: 336KB
 with 12 variables saved: 1968KB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

