Lustre Administrators and Developers Workshop 2014

Fujitsu's Lustre Contributions - Policy and Roadmap-

Shinji Sumimoto, Kenichiro Sakai Fujitsu Limited, a member of OpenSFS

Outline of This Talk

- Current Status of Fujitsu's Supercomputer Development
 Past and Current Product Development
 The Next Step towards Exa-scale Development
- Fujitsu's Contribution Policy to Lustre Community
 Contribution Policy
 Current Contribution and the Next Step
- Introduction of Contribution Feature
 IB Multi-rail, Directory Quota etc..

Fujitsu Joins OpenSFS, Oct. 14, 2013

	📩 About Us Why Join Resources	Events News Contact		
	Lustre Community	Follow Us 🍑	Search 🖁	
Fujitsu Joins OpenS	FS		Lustre Links	
Lustre® file system support continues to grow worldwide, OpenSFS membership expanding Join a Mailing List				
Beaverton, OR - October 14, 2013 - Open Scalable File Systems, Inc. (OpenSFS), the premier non-profit Get started with Lustre				
organization advancing and coord	nouncing Fujitsu has	Read Documentation		
computer, the world's fastest sup	ercomputer in 2011. Fujitsu is joining OpenSFS at t	he Supporter Level,	Download Lustre	
which provides organizations the ability to vote on the OpenSFS stack of software as well as participate in			* Submit an Issue	
working groups.			W Lustre Wiki	
Fujitsu is also a Gold Sponsor of the Lustre User Group (LUG) in Tokyo, taking place October 17, 2013.				
"We are very excited to welcome Galen Shipman, OpenSFS Chairm high quality standards for its user growth of Lustre worldwide."	Fujitsu, a perennial leader of the TOP10 supercom nan. "Fujitsu pushes Lustre to extreme limits, while s. So their membership provides even more stren	puting sites list," said maintaining famously gth and support to the		
The K computer, which is jointly d Computing Infrastructure (HPCI) i Technology (MEXT). Configuration	eveloped by RIKEN and Fujitsu, is part of the High- nitiative led by Japan's Ministry of Education, Cultu n of the K computer began in September 2010.	-Performance ıre, Sports, Science and		
The "K" in K computer comes from power. And the logo for the K com expresses a large gateway, and "it science."	n the Japanese kanji letter "Kei" which means ten nputer is based on the Japanese kanji letter Kei. In is hoped that the system will be a new gateway to	peta or 10 to the 16th its original sense, "Kei" o computational		

CURRENT STATUS OF FUJITSU'S SUPERCOMPUTER DEVELOPMENT

History of Fujitsu Supercomputers

K computer and the Next Step

FUjitsu

- K computer: Still TOP500 Rank #4 system in the world.
 - FEFS on K computer is the first 1 TB/s sustained IOR performance file system in the world.
- We are now developing FEFS for the next Post-FX10 system.

The next target is Exa-scale system

SDHPC Activities for Exascale System

Japanese researchers wrote roadmap papers for the exascale system (2010/8 -)

(Japanese) http://open-supercomputer.org/wp-content/uploads/2012/03/FutureHPCI-Report.pdf (English) http://www.exascale.org/mediawiki/images/a/aa/Talk-3-kondo.pdf

Report on Exascale Architecture Roadmap in Japan

Masaaki Kondo (UEC-Tokyo)

(presented on behalf of SDHPC architecture WG)

IESP Meeting@Kobe (April 12, 2012)

Storage and System Requirement from the Architecture Roadmap

Performance Projection

Performance projection for an HPC system in 2018

- Achieved through continuous technology development
- Constraints: 20 30MW electricity & 2000sqm space

٨	lode Performance	Total CPU Performance (PetaFLOPS)	Total Memory Bandwidth (PetaByte/s)	Total Memory Capacity (PetaByte)	Byte / Flop
	General Purpose	200~400	20~40	20~40	0.1
	Capacity-BW Oriented	50~100	50~100	50~100	1.0
	Reduced Memory	500~1000	250~500	0.1~0.2	0.5
	Compute Oriented	1000~2000	5~10	5~10	0.005

Ν	etwork	

				Min	Max	Total Capacity	Total Bandwidth
	Injection	P-to-P	Bisection	Latency	Latency	1 EB	10TB/s
High-radix (Dragonfly)	32 GB/s	32 GB/s	2.0 PB/s	200 ns	1000 ns	100 times larger than main	For saving all data in memory to disks
Low-radix (4D Torus)	128 GB/s	16 GB/s	0.13 PB/s	100 ns	5000 ns	00 ns memory	within 1000-sec.

IESP Meeting@Kobe (April 12, 2012)

6

Storage

Fujitsu's FEFS Development towards Exascale Fujitsu

- Fujitsu will continue to develop Lustre based FEFS to realize the next generation exa-scale systems.
 - Needs to continue to enhance Lustre
- FEFS already supports Exa-byte class file system size
 - However, several issues to realize real Exa-scale file system
- One of Issue is Exa-scale storage design
 - Electric Power and Footprint including Computing System and Storage: Electric Power: 20-30MW, Footprint: 2000m2(SDHPC)
 - Electric power for storage system must be minimized because most of the power should be used for computing.
 - Power Consumption of Exa-byte class Storage System: Should be Less than 1MW (as assumption)

Exascale File System Design

K computer File System Design

- How should we realize High Speed and Redundancy together?
- How do we avoid I/O conflicts between Jobs?
- These are not realized in single file system.
 - •Therefore, we have introduced Integrated Layered File System.
- Exascale File System/Storage Design

Another trade off targets: Power, Capacity, Footprint

- Difficult to realize single 1EB and 10TB/s class file system in limited power consumption and footprint.
- Third Storage layer for Capacity is needed: Three Layered File System
 - Local File System for Performance
 - Global File System for Easy to Use
 - Archive File System for Capacity

Issues for Post-Petascale File/Storage System Fujirsu

- Power Saving Storage Architecture for 1EB Class storage
 20MW-30MW: Total System Power including Computing System
 Required Total (Compute and Storage) power management
- Lustre is not ready for EXA byte size systems
 - FEFS and GPFS are ready, so current Lustre needs to expand its limits. It also limits specification of Lustre 2.x based FEFS
- Issues for Realizing Post-Petascale File System:
 - How to realize application specific high speed file access to the local file system? – Needs to investigate storage access pattern of target applications
 - How to realize transparent file access among three file systems? – Lustre HSM is one of options.

FUJITSU'S CONTRIBUTION POLICY TO LUSTRE COMMUNITY

Fujitsu' Lustre Contribution Policy

- Fujitsu will open its development plan and feed back it's enhancements to Lustre community
 - LAD is the most suitable place to present and discuss.
- Fujitsu's basic contribution policy:
 - Opening development plan
 - Feeding back its enhancements to Lustre community no later than after a certain period when our product is shipped.

Fujitsu's Activities to Lustre Community

Step 1 (2012-2013): Basic Enhancement for Core Lustre Modules with Whamcloud/Intel

Step 2 (2014-): Advanced Function Contribution by Fujitsu.

Fujitsu Contributions of Basic Enhancement

Fujitsu ported our enhancements into Lustre 2.x with Intel

Jira	Function	Landing
LU-2467	Ability to disable pinging	Lustre 2.4
LU-2466	LNET networks hashing	Lustre 2.4
LU-2934	LNET router priorities	Lustre 2.5
LU-2950	LNET read routing list from file	Lustre 2.5
LU-2924	Reduce IdIm_poold execution time	Lustre 2.5
LU-3221	Endianness fixes (SPARC support)	Lustre 2.5
LU-2743	Errno translation tables (SPARC Support)	Lustre 2.5
LU-4665	Ifs setstripe to specify OSTs	Lustre 2.7
	Bug-fixes	are not included

Fujitsu Contributions of Advanced Functions

Fujitsu's now been porting our enhancements into Lustre 2.x

- These features were implemented in Lustre 1.8 based FEFS
- They've been used in our customer's HPC system, including K computer
- We'll start submitting patches for Lustre in 2015

Functions	Submitting Schedule
IB multi-rail	Jan. 2015
Automated Evict Recovery	Арг. 2015
Directory Quota	2 nd half of 2015
Improving Single Process IO Performance	2 nd half of 2015
Client QoS	2 nd half of 2015
Server QoS	TBD
Memory Usage Management	TBD

Fujitsu's Contribution Roadmap

- Fujitsu's development and community feedback plan
 - Schedule may change by Fujitsu's development/marketing strategy

Advanced Function(1)

FUĴITSU

InfiniBand (IB) Multi-rail

- Multiple InfiniBand(IB) interfaces as a single Lustre NID
- Improving Data Transferring Bandwidth on a single Lustre node
- Improving Redundancy against Failures of IB.
- Achieved about 11GB/s read/write performance with two FDR IB HCAs (Single 6GB/s)
- Tested with upto four IB HCA devices

Directory Quota able to:

- Use Directory Quota (DQ for short) feature in the same way of Lustre's UID/GID quota function
- Limit the number of inodes and disk blocks to each directory specified by user
- Be managed by Ifs command like UID/GID quota of Lustre.

Advanced Function(2)

- Improvement of single process IO performance
 - Improving single process IO performance
 - Our prototype results: Over 2GB/s bandwidth twice as fast as Lustre 2.5.
- Client QoS
 - Provides Fair Share accesses among users on a single Lustre client
 - On a multi user client, when one user issues large amount of IO, the IO performance of the other users are terribly degrade.
 - Client QoS feature prevents this performance issue by controlling the number of IO requests issued by each user.

Automated Evict Recovery

- When a Lustre server evicts a client, the server notifies the client to reconnect the server. This occurs IO error to user application
- Minimizing the evicting status of Lustre clients especially disable pinging feature is enabled
- Reducing the occurring of IO error to user application.

INTRODUCTION OF CONTRIBUTIONFEATURESInfiniBand (IB) Multi-rail

Directory Quota Improving Single Process IO Performance

Issue of Current Lustre IB Multi-rail

Client, MDS and OSS can not use multiple IB I/F.
 Single IB I/F failure in a server (MDS/OSS) cause failover.
 Client can use only one IB I/F when accessing a server.

FEFS IB Multi-rail

- FEFS Approach: Add IB multi-rail function into Lustre network driver (o2iblnd).
 - All IB I/F on the client can be used to communicate with a server.
 - All IB connections are used by round-robin order.
- Continue communication when single point of IB failure occurs.
 - All IB connections are used by round-robin order by each requests.

Variation of Multi-Rail

 Not only symmetric connection but also asymmetric connection for every node pair.
 User can realize flexible configuration

IB Multi-Rail: How to Use

Combining single NID width multiple IB interfaces

LNET setting (modprobe.conf)

options lnet networks=o2ib0(ib0,ib2)

NID/IPoIB definition

lctl -net o2ib0 add_o2ibs 192.168.0.10@o2ib0 192.168.0.10 192.168.0.11 → Client
lctl -net o2ib0 add_o2ibs 192.168.0.12@o2ib0 192.168.0.12 192.168.0.13 → Server

Display multi-rail information

lctl --net o2ib0 show_o2ibs 192.168.0.10@o2ib0 192.168.0.10 192.168.0.11 192.168.0.12@o2ib0 192.168.0.12 192.168.0.13

IB Multi-Rail: LNET Performance

Server

- CPU: Xeon E5520 2.27GHz x2
- IB: QDR x2 or FDR x2
- Result
 - B/W almost scales by #IBs
 - Achieves nearly HW performance

IB Multi-Rail: IO Throughput of Single OSS

OSS/Client

- CPU: Xeon E5520 2.27GHz x2
- IB: QDR x2

OST

■ ramdisk x8 (> 6GB/s)

IOR

32-process (8client x4)

- Throughput almost scales by #IBs
- Measurement of FDR is planned

Directory Quota : Features

- What is Directory Quota?
 - Restricting #inodes&blocks by individual directories
 - All files/directories under the DQ-enable directory are under Quota accounting
- Fujitsu is now implementing Directory Quota (DQ) function into Lustre 2.x
 - DQ of FEFS based on Lustre 1.8 has been used in production systems for more than two years.
- Will be Implemented on top of the Disk Quota framework
 DQ can be used along with disk Quota

Directory Quota(DQ) : Use Image

- Use Case1: for Job Directory
 DQ can control file system usage for each job
- Use Case1: for Shared Directory
 Of course, DQ can control shared directories for their usage

Limitation

Nested DQ directories are not permitted, because of simplicity of implementation and performance

Directory Quota: How to Use

- Operations are same as Lustre's UID/GID Quota
 Only "quotacheck" operation differs
- Set DQ on target directory (=DQ-directory)
 - # Ifs quotacheck –d <target dir>
 - Counts the number of inodes&blocks of existing files under DQ-directory
- Set limits of inodes and blocks
 - # Ifs setquota -d <target dir> -B <#blk> -I <#inode> <mountpoint>
- Enable limiting by DQ
 - # lctl conf_param <fsname>.quota.<ost|mdt>=<ugd>
 - # lctl set_param -P <fsname>.quota.<ost|mdt>= <ugd>
- Check status
 - # lctl get_param osd-*.*.quota_slave.info

Improving Single Process IO Performance

Comparison between Lustre 2.6.0 and prototype (Lustre 1.8 base)
 We've been re-designing implementation suiting Lustre 2.x

OSS/Client

- CPU: Xeon E5520 2.27GHz x2
- IB: QDR x1

OST

ramdisk x4

IOR

1-process

Result

- Lustre 2.6.0 0.9~1.0GB/s
- Prototype 2.2~2.9GB/s

Summary

- Fujitsu will continue to improve Lustre for exascale systems.
- Fujitsu will open its development plan and feed back it's enhancements to Lustre community
 - LAD is the most suitable place to present and discuss.
- Several Features will be scheduled to be contributed
 - InfiniBand Multi-rail, Direcotry Quota etc...

FUJTSU

shaping tomorrow with you