
Spillover Space: Dynamic Layouts for Tiering

Self-Extending Layouts (SEL)
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Tiering

• Different types of storage hardware with different 
tradeoffs of latency, capacity, and cost:
Flash, HDD, SMR1 HDD

• Modern file systems often include multiple types, 
separated in tiers

• Lustre supports tiering: Different OST HW, OST pools, 
file layouts

• Problem: Tiering splits the file system, and it becomes 
easier to run out of space

• Space rebalancing becomes more important

1Shingled Magnetic Recording
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Traditional Lustre Layout

• RAID0 striping across OSTs

• OST space is checked at file creation time

• Static: Cannot be changed once file is created

• If an OST runs out of space, cannot write to 
files striped to that OST

• Same striping for the entire file
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Progressive File Layouts

• Different layouts for different regions of a file

• Fits nicely with tiering – Small files on flash, 
large files split between flash and disk
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PFL: Layout Initialization
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• When a client writes to a component for the 
first time, it asks the server to initialize it:



PFL: Limitations
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• PFL improves space balancing as components 
are initialized when needed

• But components are large and we check OST 
space only at initialization time

• If an OST runs out of space, we cannot write 
to components already using that OST

• Initialized components are static and 
cannot be changed



Dynamic Layouts

• We would like layouts to handle conditions 
such as running low on space

• Changing layout during i/o is an old idea, but 
very hard to do well

• If we can manage layout in smaller granularity, 
we can be more dynamic

• Many tiny components would use too much 
MDT space, but there is another way
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New Feature: Self-Extending Layouts
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• Gives layout in smaller chunks, rather than whole 
components

• Component is split in two parts: Initialized and 
extension space

• When more layout is needed, check if there is 
enough free space on the current OSTs

• If there is enough space, initialized part is 
extended

• Otherwise, switch to a new component on 
different OSTs



Self-Extending Layouts
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Self-Extending Layouts
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• Because layout is given in chunks, it is 
still possible to get ENOSPC if an OST fills 
up before the chunk runs out

• Chunk size is a tradeoff between performance 
and the chance of getting ENOSPC

• Low space check is tunable: OSTs report "low 
space" at a threshold

• "low space" check & handling will eventually 
be policies with various choices



Self-Extending Layouts: Self Spillover
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• Single tier layouts cannot spill over to other 
tiers when an OST is low on space

• Solution: Spill over within the tier

• Create a new component, using the previous 
component as a template

• Start writing to new OSTs



Self-Spillover
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Self-Extending Layouts: Self-Spillover
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• Broadly applicable: Doesn't need multiple 
tiers

• All files can benefit:
When creating a non-PFL file, make it PFL with 
a self-extending component at the end
When creating a PFL file, make the last 
component self-extending

• Automatic space rebalancing for any system(!)



Development Status

• LU-10070 at Whamcloud

• Targeting Lustre 2.13 upstream (sooner from 
Cray)

• We encourage you to join upstream review if 
interested
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Finally

• Any questions?

• Happy to answer questions later or by email

• Developer: Patrick Farrell, (paf@cray.com)
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