Spillover Space: Dynamic Layouts for Tiering

Self-Extending Layouts (SEL)

9/21/2018 Copyright 2018, Cray Inc. 1

Tiering

* Different types of storage hardware with different
tradeoffs of latency, capacity, and cost:
Flash, HDD, SMR! HDD

 Modern file systems often include multiple types,
separated in tiers

e Lustre supports tiering: Different OST HW, OST pools,
file layouts

* Problem: Tiering splits the file system, and it becomes
easier to run out of space

e Space rebalancing becomes more important

1Shingled Magnetic Recording

Traditional Lustre Layout

* RAIDO striping across OSTs
e OST space is checked at file creation time
e Static: Cannot be changed once file is created

e |f an OST runs out of space, cannot write to
files striped to that OST

e Same striping for the entire file

9/21/2018 Copyright 2018, Cray Inc.

Progressive File Layouts

e Different layouts for different regions of a file

* Fits nicely with tiering — Small files on flash,
arge files split between flash and disk

Example PFL Layout

SSD

SSD | HDD SMR HDD
[0,1 GiB) [1,10 GiB) [10 GiB, o)

9/21/2018 Copyright 2018, Cray Inc.

PFL: Layout Initialization

 When a client writes to a component for the
first time, it asks the server to initialize it:

Initialized Layout Uninitialized Layout
— g B S
ST — I SE e
[0,1 GiB, [1,10 GiB, 2 stripes) [10 GiB,)
OST 0)

[0,1 GiB, [1,10 GiB (OSTs 5,6)) [10 GiB, o)
OST 0)

9/21/2018 Copyright 2018, Cray Inc.

PFL: Limitations

PFL improves space balancing as components
are initialized when needed

But components are large and we check OST
space only at initialization time

If an OST runs out of space, we cannot write
to components already using that OST

Initialized components are static and
cannot be changed

Dynamic Layouts

We would like layouts to handle conditions
such as running low on space

Changing layout duringi/o is an old idea, but
very hard to do well

If we can manage layout in smaller granularity,
we can be more dynamic

Many tiny components would use too much
MDT space, but there is another way

New Feature: Self-Extending Layouts

e Gives layout in smaller chunks, rather than whole
components

e Component is split in two parts: Initialized and
extension space

* When more layout is needed, check if there is
enough free space on the current OSTs

* |f there is enough space, initialized part is
extended

e Otherwise, switch to a new component on
different OSTs

9/21/2018 Copyright 2018, Cray Inc.

Self-Extending Layouts

Write
request Check OSTs for space: If there is enough, add 1 GiB to SSD layout
past 1 GiB

Write
request Not pnough space on OSTs: Spill over to next component

past 2 GiB

9/21/2018 Copyright 2018, Cray Inc.

Self-Extending Layouts

Because layout is given in chunks, it is
still possible to get ENOSPC if an OST fills
up before the chunk runs out

Chunk size is a tradeoff between performance
and the chance of getting ENOSPC

Low space check is tunable: OSTs report "low
space" at a threshold

"low space" check & handling will eventually
be policies with various choices

Self-Extending Layouts: Self Spillover

* Single tier layouts cannot spill over to other
tiers when an OST is low on space

* Solution: Spill over within the tier

* Create a new component, using the previous
component as a template

e Start writing to new OSTs

9/21/2018 Copyright 2018, Cray Inc. 11

Self-Spillover

lextension component

OSTs 0,1 Write |
request Not enough space on OSTs:
past 5 GiB Create new component on new OSTs
[Dbse®) | BeGE | +1ciB [6=)GiB
OSTs 0,1 OSTs 3,4 .
Write
request Extend new component
past 6 GiB
OSTs 0,1 OSTs 3,4
COMPLT STOR] ARNAL YT

9/21/2018 Copyright 2018, Cray Inc.

12

Self-Extending Layouts: Self-Spillover

* Broadly applicable: Doesn't need multiple
tiers

* All files can benefit:
When creating a non-PFL file, make it PFL with
a self-extending component at the end
When creating a PFL file, make the last
component self-extending

e Automatic space rebalancing for any system(!)

9/21/2018 Copyright 2018, Cray Inc. 13

®e
CRANY

Development Status A

e LU-10070at Whamcloud

e Targeting Lustre 2.13 upstream (sooner from
Cray)

* We encourage you to join upstream review if
interested

9/21/2018 Copyright 2018, Cray Inc. 14

.

Finally

* Any questions?
* Happy to answer questions later or by email
* Developer: Patrick Farrell, (paf@cray.com)

9/21/2018 Copyright 2018, Cray Inc.

15

mailto:paf@cray.com

