
Spillover Space: Dynamic Layouts for Tiering

Self-Extending Layouts (SEL)

9/21/2018 Copyright 2018, Cray Inc. 1



Tiering

• Different types of storage hardware with different 
tradeoffs of latency, capacity, and cost:
Flash, HDD, SMR1 HDD

• Modern file systems often include multiple types, 
separated in tiers

• Lustre supports tiering: Different OST HW, OST pools, 
file layouts

• Problem: Tiering splits the file system, and it becomes 
easier to run out of space

• Space rebalancing becomes more important

1Shingled Magnetic Recording

9/21/2018 Copyright 2018, Cray Inc. 2



Traditional Lustre Layout

• RAID0 striping across OSTs

• OST space is checked at file creation time

• Static: Cannot be changed once file is created

• If an OST runs out of space, cannot write to 
files striped to that OST

• Same striping for the entire file

9/21/2018 Copyright 2018, Cray Inc. 3



Progressive File Layouts

• Different layouts for different regions of a file

• Fits nicely with tiering – Small files on flash, 
large files split between flash and disk

9/21/2018 Copyright 2018, Cray Inc. 4



PFL: Layout Initialization

9/21/2018 Copyright 2018, Cray Inc. 5

• When a client writes to a component for the 
first time, it asks the server to initialize it:



PFL: Limitations

9/21/2018 Copyright 2018, Cray Inc. 6

• PFL improves space balancing as components 
are initialized when needed

• But components are large and we check OST 
space only at initialization time

• If an OST runs out of space, we cannot write 
to components already using that OST

• Initialized components are static and 
cannot be changed



Dynamic Layouts

• We would like layouts to handle conditions 
such as running low on space

• Changing layout during i/o is an old idea, but 
very hard to do well

• If we can manage layout in smaller granularity, 
we can be more dynamic

• Many tiny components would use too much 
MDT space, but there is another way

9/21/2018 Copyright 2018, Cray Inc. 7



New Feature: Self-Extending Layouts

9/21/2018 Copyright 2018, Cray Inc. 8

• Gives layout in smaller chunks, rather than whole 
components

• Component is split in two parts: Initialized and 
extension space

• When more layout is needed, check if there is 
enough free space on the current OSTs

• If there is enough space, initialized part is 
extended

• Otherwise, switch to a new component on 
different OSTs



Self-Extending Layouts

9/21/2018 Copyright 2018, Cray Inc. 9



Self-Extending Layouts

9/21/2018 Copyright 2018, Cray Inc. 10

• Because layout is given in chunks, it is 
still possible to get ENOSPC if an OST fills 
up before the chunk runs out

• Chunk size is a tradeoff between performance 
and the chance of getting ENOSPC

• Low space check is tunable: OSTs report "low 
space" at a threshold

• "low space" check & handling will eventually 
be policies with various choices



Self-Extending Layouts: Self Spillover

9/21/2018 Copyright 2018, Cray Inc. 11

• Single tier layouts cannot spill over to other 
tiers when an OST is low on space

• Solution: Spill over within the tier

• Create a new component, using the previous 
component as a template

• Start writing to new OSTs



Self-Spillover

9/21/2018 Copyright 2018, Cray Inc. 12



Self-Extending Layouts: Self-Spillover

9/21/2018 Copyright 2018, Cray Inc. 13

• Broadly applicable: Doesn't need multiple 
tiers

• All files can benefit:
When creating a non-PFL file, make it PFL with 
a self-extending component at the end
When creating a PFL file, make the last 
component self-extending

• Automatic space rebalancing for any system(!)



Development Status

• LU-10070 at Whamcloud

• Targeting Lustre 2.13 upstream (sooner from 
Cray)

• We encourage you to join upstream review if 
interested

9/21/2018 Copyright 2018, Cray Inc. 14



Finally

• Any questions?

• Happy to answer questions later or by email

• Developer: Patrick Farrell, (paf@cray.com)

9/21/2018 Copyright 2018, Cray Inc. 15

mailto:paf@cray.com

