

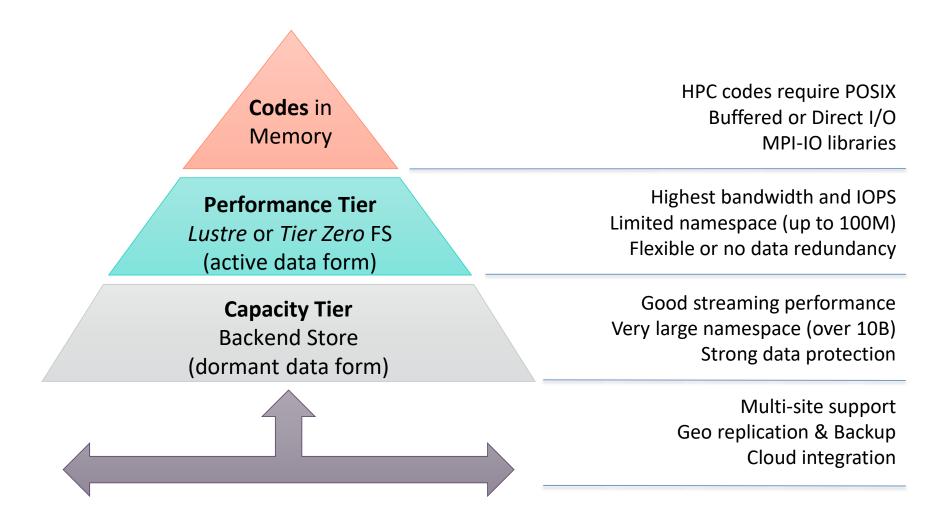
Hewlett Packard Enterprise

Experience Building DMF7 on Lustre

Olaf Weber Master Technologist HPC Data Management & Storage

Disclaimer

- The information contained in this presentation is proprietary to Hewlett Packard Enterprise (HPE) and may contain forwardlooking information regarding products or services that are not yet available.
- Do not remove this slide from the presentation
- HPE does not warrant or represent that it will introduce any product to which the information relates
- The information contained herein is subject to change without notice
- HPE makes no warranties regarding the accuracy of this information


- The only warranties for HPE products and services are set forth in the express warranty statements accompanying such products and services
- Nothing herein should be construed as constituting an additional warranty
- HPE shall not be liable for technical or editorial errors or omissions contained herein

Data Management Framework 7

Data Tiers

Data Management Framework 7

Hierarchical Storage Management →

Data Migration Facility (DMF6)

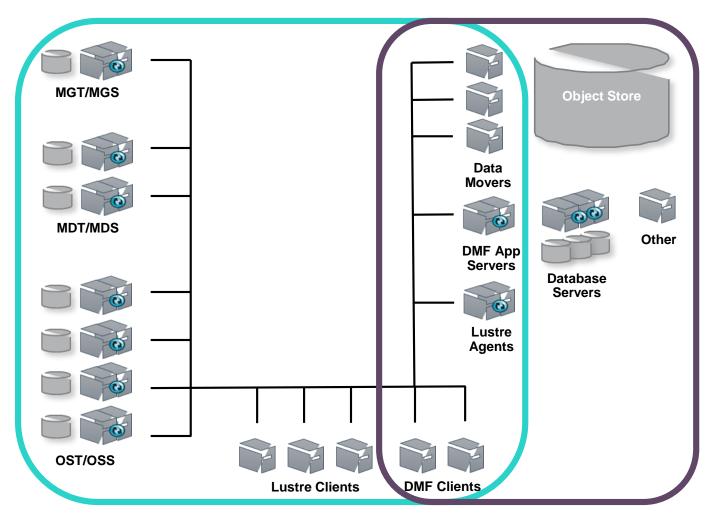
- Filesystem is the metadata database
- Entire namespace is in filesystem
 - Database does not have directory info
- File data is migrated transparently
 - Policy engine drives put/punch/get
 - Access drives get
- Migration leaves inodes in place
- Migration leaves extended attributes in place

Tiered Data Management

Data Management Framework (DMF7)

- Separate Metadata Database for a filesystem
- Entire namespace is in Metadata Database
 - Metadata Database does have directory info
- Object Database tracks all known objects
- File data is migrated transparently
 - Policy engine drives put/punch/get
 - Access drives get
 - But only for staged files
 - Policy engine drives destage/stage
 - Other processes can also drive destage/stage
- Destaging removes inodes from the filesystem
- Destaging removes extended attributes

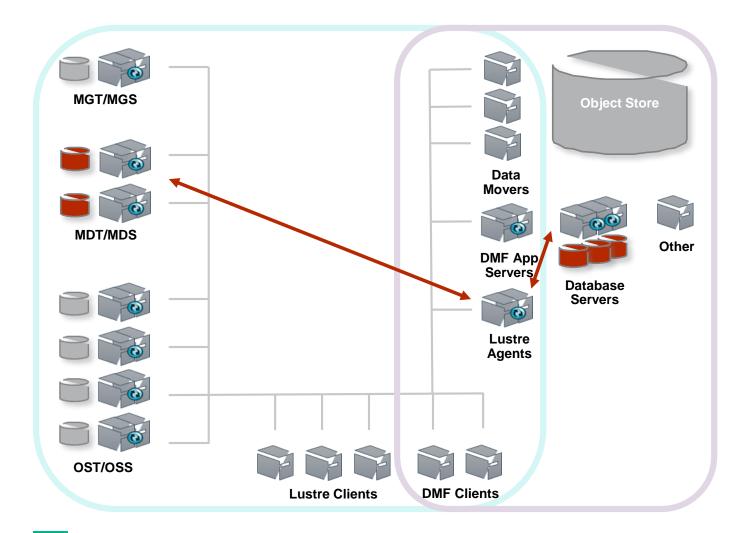
Data Management Framework 7


Features

- Redesigned from the ground up
 - Incorporate lessons from DMF6
- Designed for Tiered Data Management
- Designed for horizontal scaling
 - Scale by adding more servers
 - Distributed NoSQL database
- Many single-purpose components working together
- Most components are filesystem-agnostic
 - Lustre is the second filesystem to be supported, after HPE EXFS

Data Management Framework 7 on Lustre

Roles of DMF7 nodes


- DMF Application Servers
 - Manage the other nodes
 - Provide the registry
 - Manage namespaces / filesystems
- Database Servers
 - Manage the DMF database
 - Policy Agent
- Data Movers
 - Move data between filesystem and backend
- Lustre Agents
 - Changelog processor
 - Filesystem scanner
 - Database scrubber
- DMF Clients
 - DMF CLI available

7

Filesystem Reflection

Hewlett Packard

Enterprise

- Synchronized copy of filesystem metadata
 - Inode metadata
 - Directory tree
 - Extended attributes
 - HSM state
- Maps Lustre FIDs to Object Store
- NoSQL database
- Maintained by the Lustre Agents
 - Filesystem scanner
 - Changelog processor
 - Database scrubber
- Used by policy engine
 - Parallel data mover framework
 - Copytool interfaces with Lustre HSM

8

Interfacing with Lustre

Components that interface with Lustre

- Filesystem scanner
 - Walks the filesystem to fill in the filesystem reflection
 - Has to work in the presence of "overlong" pathnames
- Database scrubber
 - Checks the filesystem reflection for possibly-stale entries
 - Verifies on the filesystem whether the file is gone
- Changelog processor
 - Consumes Lustre changelog
 - Updates the filesystem reflection
 - Need filesystem access to obtain all necessary data
 - Most issues we encountered relate to changelog processing

- Copytool
 - Translates Lustre HSM interface to and from DMF7 internals
- Dispatcher
 - Forwards HSM requests from CLI
 - Validates file state on completion

Access a file by its FID

```
int llapi open by fid(
        const char *lustre dir,
        const struct lu fid *fid,
        int flags)
ł
        char mntdir[PATH MAX];
        char path[PATH MAX];
        int rc;
        rc = llapi search mounts(lustre dir, 0, mntdir, NULL);
        if (rc != 0)
                return -1;
        snprintf(path, sizeof(path),
                 "%s/.lustre/fid/"DFID, mntdir, PFID(fid));
        return open(path, flags);
```

Most components require this ability:

- llapi_open_by_fid()

But it pays to examine the internals:

- llapi_search_mounts() is expensive

Use /<mount>/.lustre/fid/<fid>

Access a file by its FID

/<mount>/.lustre/fid/<fid>

- Provides a fixed name for every file and directory in the filesystem
- It is a fixed-length name, independent of the location of the file

Limitations

- Need to be root.
- open () yields ENXIO for device files
 - Do not put device files on shared filesystem
- open () yields **ELOOP** for symbolic links
 - This interface cannot dereference symbolic links
 - But we get **ELOOP** even with **O_NOFOLLOW**
- The FID encodes the MDT, so migration of an inode to another MDT changes the FID

Direct I/O

- On HPE EXFS we use direct I/O extensively for performance
- On Lustre Direct I/O performance is "disappointing"
 - Especially write performance
- Direct I/O is synchronous
 - The write() call returns after the OSS has responded
- Direct I/O can still be useful to avoid spoiling caches
 - But the application doing it should be multi-threaded or use aio

Lustre Changelog

mkdir tmp

2112648 02MKDIR 09:30:25.501859712 2018.08.24 0x0 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x20000007:0x1:0x0] tmp

chmod a+rwxt tmp

2112649 14SATTR 09:30:28.739566509 2018.08.24 0x14 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

xfs_mkfile 1m file.1m

2112650 01CREAT 09:31:11.661327380 2018.08.24 0x0 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x200019271:0x2:0x0] file.1m

2112651 13TRUNC 09:31:11.741270796 2018.08.24 0xe t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

2112652 11CLOSE 09:31:11.747861801 2018.08.24 0x243 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

touch file.1m

Hewlett Packard

Enterprise

2112653 11CLOSE 09:36:18.556856115 2018.08.24 0x42 t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

- Tracks Metadata changes
 - Updated by MDS
 - Stored on MDT
 - Part of filesystem transactions
- Can only be read on Lustre client nodes
 - Must be root or equivalent
- Three types of metadata changes
 - Namespace
 - Side effects
 - Audit trail
- Controlled by per-MDT event mask
- Not a full log of the filesystem actions
 - Tracks that something changed...
 - ...but not necessarily what changed

Lustre Changelog Records

2112648 02MKDIR 09:30:25.501859712 2018.08.24 0x0 t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1 p=[0x20000007:0x1:0x0] tmp

- A Lustre Changelog Record provides the following information:
 - Record index (a sequence number)
 - Record timestamp in nanoseconds
 - Record type (kind of metadata change)
 - The FID of the object (file or directory) affected
 - If appropriate, the FID of the parent directory and the FIDs of the other objects involved in an operation
 - If appropriate, the file name or names involved in an operation
 - If appropriate, the name of the extended attribute affected
 - Stuff we don't care about
 - User and Group ID of process making the change
 - Project ID of process making the change
 - NID (Lustre's way of identifying a cluster node) of node making the change
 - If appropriate, flags given to open()

Lustre Changelog Issues

The Changelog Reader ID

- A Changelog Reader ID is used to track when entries can be removed from the MDT
- The Reader ID is registered on the MDS for the MDT
 - # lctl changelog_register
 - # lctl changelog_deregister
- The Reader ID is used on the Lustre client that reads the changelog
 - The only use is clearing entries
 - # lfs changelog_clear
 - llapi_changelog_clear()
 - A Lustre client cannot tell whether a reader ID is valid, except by trying to clear entries
- If you forget that a reader was registered...
 - You may not notice until space on the MDT runs out
 - We made this mistake during testing, and only noticed after a few weeks
 - There were several billion changelog entries on disk at that point
 - Accidentally a useful stress test

Lustre Changelog Issues

The Start-Stop Interface

Client-Side

- Start reading

llapi_changelog_start()

Read records

llapi_changelog_recv()

- Stop reading

```
llapi_changelog_fini()
```

- Repeat
 - CHANGELOG_FLAG_FOLLOW is defined...
 - ...but not implemented
 - Pause between repeats if there are no new records

Under the Hood

- The client asks the MDS for the records for the MDT
- The MDS starts a kernel thread to handle the work
 - This tread reads the records
 - Then pushes them to the client
 - On reading the last available record the thread exits
- Implementing follow semantics looks to be difficult

Lustre Changelog Issues

Out-of-order entries

- We have seen cases where the index of subsequent entries goes like this:
 - -2112648
 - 2112649
 - 2112651
 - 2112650
 - 2112652
 - 2112653
- A changelog processor needs to handle this with some care
 - Clearing to 2112651 before 2112650 has been read causes 2112650 to be lost
- Not seen with 2.10 or later MDS (yet?)
 - No LU filed for now

Lustre Changelog Issues Oddball Errors

- Before Lustre 2.10 the changelog reading loop gets **EPROTO** errors in some cases
 - These are returned by llapi_changelog_start()
 - Just call llapi_changelog_fini() and retry
 - Fixed in 2.10 when the internals of the interface were rewritten
- In Lustre 2.10 and later you get records with type -1
 - Treat as **SETXATTR** records
 - -LU-10579
- In Lustre 2.10 and later you can get spurious HSM records
 - "File successfully archived"
 - LU 11258
- There is an issue with directories that are striped across MDTs
 - The "parent directory" fid for CREATE records refers to a stripe, not the directory as a whole
 - LU-10283

Lustre Changelog Wishlist

- Implement CHANGELOG_FLAG_FOLLOW

- As noted earlier, this may be a non-trivial amount of work
- Per-reader changelog masks
 - Lets each changelog reader choose which changelog events to receive
- Have changelog timestamp match operation timestamps
 - In particular, ctime/mtime/atime timestamps of inodes
 - Avoids the need for stat() calls after namespace changes (create/rename/link/unlink)
- Reading changelog on MDS
 - Would eliminate a network hop
 - Preferably combined with fast access to inode state
 - In a multi-MDT setup, we may need inode state from a different MDS for namespace changes

Copytool Registration

- A copytool registers with a filesystem using llapi_hsm_copytool_register()
- For HA purposes we want to be able to re-register on a different node
- The interface does not really provide for this
- Solution: start copytools on all the applicable nodes and sort out the complications from there
 - The DMF7 copytool only manages the translation to and from the Lustre HSM interface

Preliminary Performance Numbers

Engineering cluster

Cluster

– DMF

- 5 x DMF application server / database server / Lustre agent
- 3 x DMF mover
- SATA SSD for DMF database
- Lustre
 - Cray appliance
 - 3 x SSU
 - 800TB
 - EDR Infiniband
- CEPH
 - 3 RGW nodes
 - EDR Infiniband

Performance

- Filesystem scan
 - 5 million entries
 - 25 minutes
- Data movement
 - Put: 8.4 GB/s
 - Get: 3.3 GB/s
- Changelog
 - 9000 to 10000 records/s

Hewlett Packard Enterprise

Thank you

Olaf Weber olaf.weber@hpe.com