
Experience Building
DMF7 on Lustre

Olaf Weber
Master Technologist
HPC Data Management & Storage

– The information contained in this presentation is proprietary to

Hewlett Packard Enterprise (HPE) and may contain forward-

looking information regarding products or services that are not yet

available.

– Do not remove this slide from the presentation

– HPE does not warrant or represent that it will introduce any

product to which the information relates

– The information contained herein is subject to change without

notice

– HPE makes no warranties regarding the accuracy of this

information

– The only warranties for HPE products and services are set forth in

the express warranty statements accompanying such products and

services

– Nothing herein should be construed as constituting an additional

warranty

– HPE shall not be liable for technical or editorial errors or omissions

contained herein

Disclaimer

Data Management Framework 7

3

Data Tiers

4

Codes in
Memory

Performance Tier
Lustre or Tier Zero FS

(active data form)

Capacity Tier
Backend Store

(dormant data form)

HPC codes require POSIX
Buffered or Direct I/O

MPI-IO libraries

Highest bandwidth and IOPS
Limited namespace (up to 100M)

Flexible or no data redundancy

Good streaming performance
Very large namespace (over 10B)

Strong data protection

Multi-site support
Geo replication & Backup

Cloud integration

Data Management Framework 7
Hierarchical Storage Management g Tiered Data Management

Data Migration Facility (DMF6)

– Filesystem is the metadata database

– Entire namespace is in filesystem

– Database does not have directory info

– File data is migrated transparently

– Policy engine drives put/punch/get

– Access drives get

– Migration leaves inodes in place

– Migration leaves extended attributes in place

Data Management Framework (DMF7)

– Separate Metadata Database for a filesystem

– Entire namespace is in Metadata Database

– Metadata Database does have directory info

– Object Database tracks all known objects

– File data is migrated transparently

– Policy engine drives put/punch/get

– Access drives get

– But only for staged files

– Policy engine drives destage/stage

– Other processes can also drive destage/stage

– Destaging removes inodes from the filesystem

– Destaging removes extended attributes

5

Data Management Framework 7

Features

– Redesigned from the ground up

– Incorporate lessons from DMF6

– Designed for Tiered Data Management

– Designed for horizontal scaling

– Scale by adding more servers

– Distributed NoSQL database

– Many single-purpose components working together

– Most components are filesystem-agnostic

– Lustre is the second filesystem to be supported, after HPE EXFS

6

– DMF Application Servers

– Manage the other nodes

– Provide the registry

– Manage namespaces / filesystems

– Database Servers

– Manage the DMF database

– Policy Agent

– Data Movers

– Move data between filesystem and backend

– Lustre Agents

– Changelog processor

– Filesystem scanner

– Database scrubber

– DMF Clients

– DMF CLI available

Roles of DMF7 nodes

Data Management Framework 7 on Lustre

Data
Movers

Database
Servers

MGT/MGS

MDT/MDS

OST/OSS

Object Store

Lustre
Agents

Other

Lustre Clients

DMF App
Servers

Internal Use Only 7

DMF Clients

– Synchronized copy of filesystem metadata

– Inode metadata

– Directory tree

– Extended attributes

– HSM state

– Maps Lustre FIDs to Object Store

– NoSQL database

– Maintained by the Lustre Agents

– Filesystem scanner

– Changelog processor

– Database scrubber

– Used by policy engine

– Parallel data mover framework

– Copytool interfaces with Lustre HSM

Filesystem Reflection

Data
Movers

Database
Servers

MGT/MGS

MDT/MDS

OST/OSS

Object Store

Lustre
Agents

Other

Lustre Clients

DMF App
Servers

Internal Use Only 8

DMF Clients

Interfacing with Lustre

9

Components that interface with Lustre

– Filesystem scanner

– Walks the filesystem to fill in the filesystem reflection

– Has to work in the presence of “overlong” pathnames

– Database scrubber

– Checks the filesystem reflection for possibly-stale entries

– Verifies on the filesystem whether the file is gone

– Changelog processor

– Consumes Lustre changelog

– Updates the filesystem reflection

– Need filesystem access to obtain all necessary data

– Most issues we encountered relate to changelog processing

– Copytool

– Translates Lustre HSM interface to and from DMF7 internals

– Dispatcher

– Forwards HSM requests from CLI

– Validates file state on completion

10

int llapi_open_by_fid(

const char *lustre_dir,

const struct lu_fid *fid,

int flags)

{

char mntdir[PATH_MAX];

char path[PATH_MAX];

int rc;

rc = llapi_search_mounts(lustre_dir, 0, mntdir, NULL);

if (rc != 0)

return -1;

snprintf(path, sizeof(path),

"%s/.lustre/fid/"DFID, mntdir, PFID(fid));

return open(path, flags);

}

Most components require this ability:

– llapi_open_by_fid()

But it pays to examine the internals:

– llapi_search_mounts() is expensive

Use /<mount>/.lustre/fid/<fid>

11

Access a file by its FID

Access a file by its FID

/<mount>/.lustre/fid/<fid>

– Provides a fixed name for every file and directory in the filesystem

– It is a fixed-length name, independent of the location of the file

Limitations

– Need to be root.

– open() yields ENXIO for device files

– Do not put device files on shared filesystem

– open() yields ELOOP for symbolic links

– This interface cannot dereference symbolic links

– But we get ELOOP even with O_NOFOLLOW

– The FID encodes the MDT, so migration of an inode to another MDT changes the FID

12

Direct I/O

– On HPE EXFS we use direct I/O extensively for performance

– On Lustre Direct I/O performance is “disappointing”

– Especially write performance

– Direct I/O is synchronous

– The write() call returns after the OSS has responded

– Direct I/O can still be useful to avoid spoiling caches

– But the application doing it should be multi-threaded or use aio

mkdir tmp

2112648 02MKDIR 09:30:25.501859712 2018.08.24 0x0
t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1
p=[0x200000007:0x1:0x0] tmp

chmod a+rwxt tmp

2112649 14SATTR 09:30:28.739566509 2018.08.24 0x14
t=[0x200019271:0x2:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

xfs_mkfile 1m file.1m

2112650 01CREAT 09:31:11.661327380 2018.08.24 0x0
t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1
p=[0x200019271:0x2:0x0] file.1m

2112651 13TRUNC 09:31:11.741270796 2018.08.24 0xe
t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

2112652 11CLOSE 09:31:11.747861801 2018.08.24 0x243
t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

touch file.1m

2112653 11CLOSE 09:36:18.556856115 2018.08.24 0x42
t=[0x200019271:0x3:0x0] ef=0xf u=0:0 nid=192.168.131.17@tcp1

– Tracks Metadata changes

– Updated by MDS

– Stored on MDT

– Part of filesystem transactions

– Can only be read on Lustre client nodes

– Must be root or equivalent

– Three types of metadata changes

– Namespace

– Side effects

– Audit trail

– Controlled by per-MDT event mask

– Not a full log of the filesystem actions

– Tracks that something changed…

– …but not necessarily what changed

14

Lustre Changelog

Internal Use Only

Lustre Changelog Records

2112648 02MKDIR 09:30:25.501859712 2018.08.24 0x0 t=[0x200019271:0x2:0x0] ef=0xf

u=0:0 nid=192.168.131.17@tcp1 p=[0x200000007:0x1:0x0] tmp

– A Lustre Changelog Record provides the following information:

– Record index (a sequence number)

– Record timestamp in nanoseconds

– Record type (kind of metadata change)

– The FID of the object (file or directory) affected

– If appropriate, the FID of the parent directory and the FIDs of the other objects involved in an operation

– If appropriate, the file name or names involved in an operation

– If appropriate, the name of the extended attribute affected

– Stuff we don’t care about

– User and Group ID of process making the change

– Project ID of process making the change

– NID (Lustre’s way of identifying a cluster node) of node making the change

– If appropriate, flags given to open()

Internal Use Only 15

Lustre Changelog Issues
The Changelog Reader ID

– A Changelog Reader ID is used to track when entries can be removed from the MDT

– The Reader ID is registered on the MDS for the MDT

lctl changelog_register

lctl changelog_deregister

– The Reader ID is used on the Lustre client that reads the changelog

– The only use is clearing entries

lfs changelog_clear

llapi_changelog_clear()

– A Lustre client cannot tell whether a reader ID is valid, except by trying to clear entries

– If you forget that a reader was registered…

– You may not notice until space on the MDT runs out

– We made this mistake during testing, and only noticed after a few weeks

– There were several billion changelog entries on disk at that point

– Accidentally a useful stress test

16Internal Use Only

Lustre Changelog Issues
The Start-Stop Interface

Client-Side

– Start reading

llapi_changelog_start()

– Read records

llapi_changelog_recv()

– Stop reading

llapi_changelog_fini()

– Repeat

– CHANGELOG_FLAG_FOLLOW is defined…

– …but not implemented

– Pause between repeats if there are no new records

Under the Hood

– The client asks the MDS for the records for the MDT

– The MDS starts a kernel thread to handle the work

– This tread reads the records

– Then pushes them to the client

– On reading the last available record the thread exits

– Implementing follow semantics looks to be difficult

17Internal Use Only

Lustre Changelog Issues
Out-of-order entries

– We have seen cases where the index of subsequent entries goes like this:

– 2112648

– 2112649

– 2112651

– 2112650

– 2112652

– 2112653

– A changelog processor needs to handle this with some care

– Clearing to 2112651 before 2112650 has been read causes 2112650 to be lost

– Not seen with 2.10 or later MDS (yet?)

– No LU filed for now

18

Lustre Changelog Issues
Oddball Errors

– Before Lustre 2.10 the changelog reading loop gets EPROTO errors in some cases

– These are returned by llapi_changelog_start()

– Just call llapi_changelog_fini() and retry

– Fixed in 2.10 when the internals of the interface were rewritten

– In Lustre 2.10 and later you get records with type -1

– Treat as SETXATTR records

– LU-10579

– In Lustre 2.10 and later you can get spurious HSM records

– “File successfully archived”

– LU-11258

– There is an issue with directories that are striped across MDTs

– The “parent directory” fid for CREATE records refers to a stripe, not the directory as a whole

– LU-10283

19Internal Use Only

Lustre Changelog Wishlist

– Implement CHANGELOG_FLAG_FOLLOW

– As noted earlier, this may be a non-trivial amount of work

– Per-reader changelog masks

– Lets each changelog reader choose which changelog events to receive

– Have changelog timestamp match operation timestamps

– In particular, ctime/mtime/atime timestamps of inodes

– Avoids the need for stat() calls after namespace changes (create/rename/link/unlink)

– Reading changelog on MDS

– Would eliminate a network hop

– Preferably combined with fast access to inode state

– In a multi-MDT setup, we may need inode state from a different MDS – for namespace changes

20

Copytool Registration

– A copytool registers with a filesystem using llapi_hsm_copytool_register()

– For HA purposes we want to be able to re-register on a different node

– The interface does not really provide for this

– Solution: start copytools on all the applicable nodes and sort out the complications from there

– The DMF7 copytool only manages the translation to and from the Lustre HSM interface

21

Preliminary Performance Numbers

22

Engineering cluster

Cluster

– DMF

– 5 x DMF application server / database server / Lustre agent

– 3 x DMF mover

– SATA SSD for DMF database

– Lustre

– Cray appliance

– 3 x SSU

– 800TB

– EDR Infiniband

– CEPH

– 3 RGW nodes

– EDR Infiniband

Performance

– Filesystem scan

– 5 million entries

– 25 minutes

– Data movement

– Put: 8.4 GB/s

– Get: 3.3 GB/s

– Changelog

– 9000 to 10000 records/s

23

Thank you
Olaf Weber
olaf.weber@hpe.com

24

