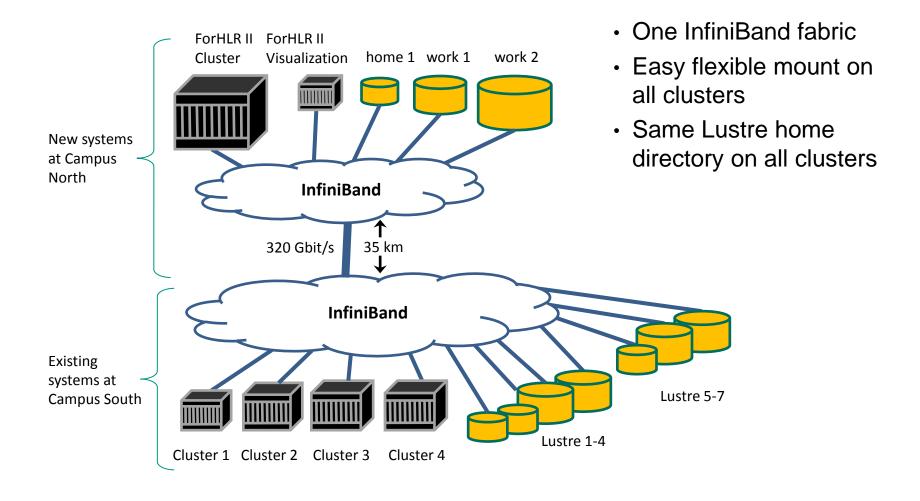


Lustre tools for Idiskfs investigation and lightweight I/O statistics

Roland Laifer

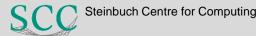
STEINBUCH CENTRE FOR COMPUTING - SCC


Overview

- Lustre systems at KIT
 - Short preview on our next Lustre system
- Lessons learned from wrong quota investigation
 - Developed tools for Idiskfs investigation
- How to easily provide I/O statitics to users
 - Developed tools for lightweight Lustre jobstats usage

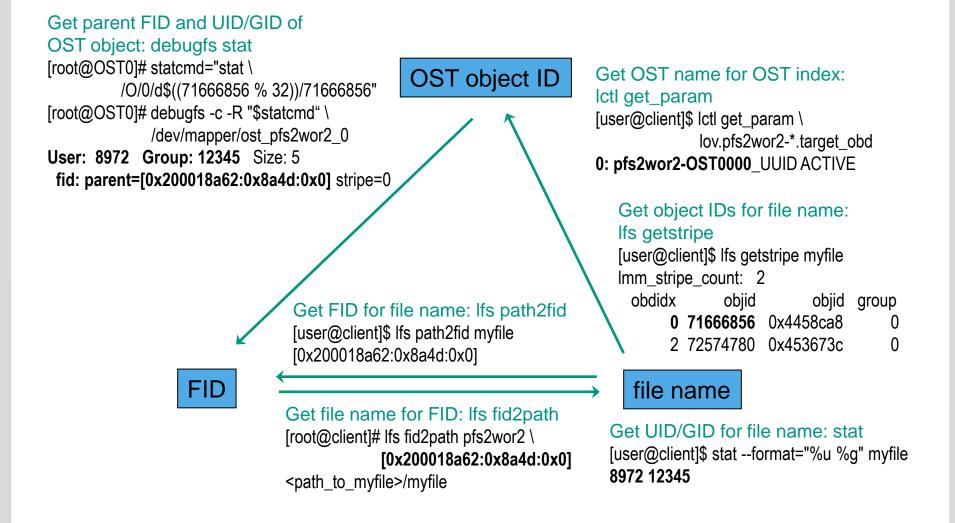
Lustre systems at KIT - diagram

Lustre systems at KIT - details



System name	pfs2	pfs3	pfs4 (Dec 15)
Users	universities, 4 clusters	universities, tier 2 cluster (phase 1)	universities, tier 2 cluster (phase 2)
Lustre server version	DDN Lustre 2.4.3	DDN based on IEEL 2.2	DDN based on IEEL 2.x
# of clients	1941	540	1200
# of servers	21	17	23
# of file systems	4	3	3
# of OSTs	2*20, 2*40	1*20, 2*40	1*14, 1*28, 1*70
Capacity (TB)	2*427, 2*853	1*427, 2*853	1*610, 1*1220, 1*3050
Throughput (GB/s)	2*8, 2*16	1*8, 2*16	1*10, 1*20, 1*50
Storage hardware	DDN SFA12K	DDN SFA12K	DDN ES7K
# of enclosures	20	20	16
# of disks	1200	1000	1120

Wrong quota investigation - general



- How we recognized that quotas are wrong
 - 1. Difference between du –hs <user dir> and lfs quota –u <user> <filesys>
 - Perl script sums all user and group quotas per OST
 - Used /proc/fs/lustre/osd-ldiskfs/<ost>/quota_slave/acct_user & acct_group
 - Should be very similar but showed few per cent deviation
 - 3. Perl script walks through file system, sums capacities and compares with quotas
 - User / group capacity quotas were up to 30 % wrong
- Support pointed to LU-4345 (http://review.whamcloud.com/11435)
 - UID / GID of OST object could be set to random value on Idiskfs
 - Capacity quotas are computed from Idiskfs quotas on OSTs
 - Bug fixed with Lustre 2.5.3 but wrong UID / GID values do not disappear
 - Wrong UID / GID of OST object possibly fixed with LFSCK of Lustre 2.6

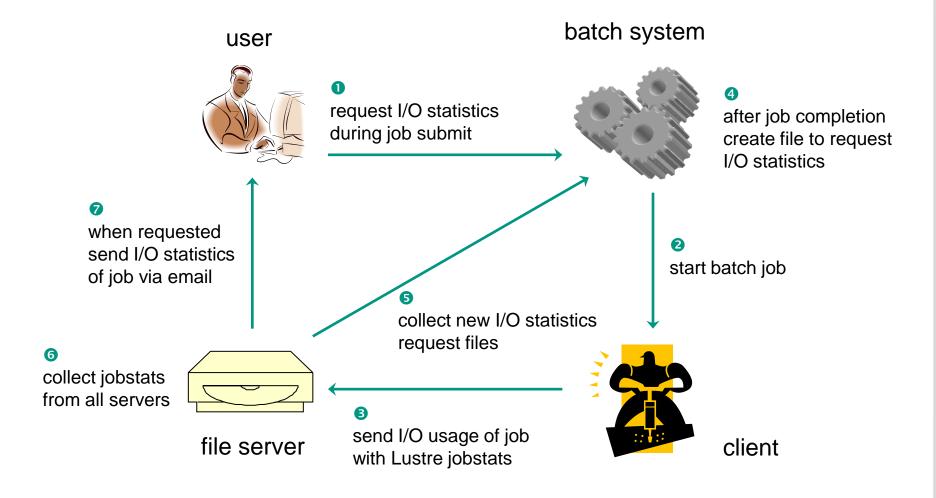
Wrong quota investigation - basics

Wrong quota investigation – details (1)

- Motivation
 - Check if bug of LU-4345 caused all quota problems
- Idea
 - During production, use debugfs to stat all OST objects
 - compare UID / GID with values on file system (MDS)
 - Get biggest object ID:
 - debugfs -c -R "dump /O/0/LAST_ID /tmp/LAST_ID" <OST device>
 - od -Ax -td8 /tmp/LAST_ID
 - Show object status on Idiskfs:
 - debugfs -c -R "stat /O/0/d\$<object ID modulo 32>/<object ID>" <OST device>
- Problem
 - How to do this fast enough?

Wrong quota investigation – details (2)

Solution

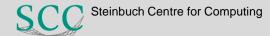

- Perl script pipes many stat commands to same debugfs call
 - Number of commands and when to restart debugfs configurable
- Use another perl script to filter output
 - If object belongs to inspected user print object ID and parent FID
 - OR: Check if UID and GID is inside valid range

Results

- Investigated only one OST
 - Investigation is still time consuming i.e. can take days
- Indeed found lots of objects with wrong UID / GID
- Found a number of orphaned OST objects
 - Unknown reason why they still existed
- Used procedure also helpful for other investigations

Lightweight I/O statistics - diagram

Lightweight I/O statistics – steps in detail (1)


- 1) Enable jobstats for all file systems
 - on clients: lctl set_param jobid_var=SLURM_JOB_ID
 - Make sure clients have fix of LU-5179
 - Slurm job IDs are used by Lustre to collect I/O stats
 - On servers increase time for holding jobstats
 - E.g. to 1 hour: lctl set_param *.*.job_cleanup_interval=3600
- 2) User requests I/O statistics with Moab msub options:
 - -W lustrestats:<file system name>[,<file system name>]...
 - Optionally: -M <email address>
- 3) On job completion Moab creates files to request I/O stats
 - File name: lustrestat-<file system name>-<cluster name>-<job ID>
 - File content: account name and optionally email address

Lightweight I/O statistics – steps in detail (2)

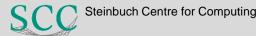
- 4) Perl script runs hourly on each file system
 - Uses different config file for each file system
 - Defines names of request files and of batch system servers
 - Allows to collect request files from different clusters
 - Defines which servers are used for the file system
 - Transfers files from batch systems and deletes remote files
 - Uses rsync and rrsync as restricted ssh command for login with key
 - Reads data including job IDs and account name
 - If not specified asks directory service to get email address of account
 - Collects and summarizes jobstats from all servers
 - For each job sends an email
 - Email is good since jobstats are collected asynchronously

Lightweight I/O statistics – example email

Subject: Lustre stats of your job 1141 on cluster xyz

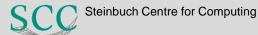
Hello,

this is the Lustre IO statistics as requested by user john_doe on cluster xyz for file system home.


Job 1141 has done ...

- ... 1 open operations.
- ... 1 close operations.
- ... 1 punch operations.
- ... 1 setattr operations.
- ... 10 write operations and sum of 10,485,760 byte writes (min IO size: 1048576, max IO size: 1048576).

Lightweight I/O statistics – experiences


- Users do not care much about their I/O usage
 - Tool was not yet frequently used
- No negative impact of jobstats activation
 - Running since 6 weeks
- Another perl script checks high I/O usage per job
 - Collects and summarizes jobstats from all servers
 - Reports job IDs over high water mark for read/write or metadata operations
 - Extremely useful to identify bad file system usage

Summary

- Currently our main Lustre problems are related to quotas
 - Tools helped to analyze on the ldiskfs level
 - New LFSCK features will hopefully fix wrong quotas
 - Quotas on directory tree would be very helpful
- Lustre jobstats are extremely useful
 - Not available with other file systems
 - It's incredible what users are doing
- All my talks about Lustre
 - http://www.scc.kit.edu/produkte/lustre.php
- roland.laifer@kit.edu

14