
© 2019 Cray Inc.

LDISKFS BLOCK ALLOCATOR

AND AGED FILE SYSTEM

Artem Blagodarenko

Paris, LAD 2019

© 2019 Cray Inc.

• Fresh file system • Aged file system

2

Symptoms: user point of view

High write

performance

High read

performance

No

fragmentation

736.29 GB/s
76% – 81% filledA lot of free blocks

13.37 GB/s
6000% decrease
in performance

Extremely low write

performance

Same read

performance

New data is

fragmented

File system running a job which usually takes 12 seconds to

complete, now taking up to 12 minutes

© 2019 Cray Inc. 3

Symptoms: developer point of view
xffffffffa14468bd <ldiskfs_mb_regular_allocator+589>: mov -0x6c(%rbp),%edx
0xffffffffa14468c0 <ldiskfs_mb_regular_allocator+592>: mov %ebx,%esi
0xffffffffa14468c2 <ldiskfs_mb_regular_allocator+594>: mov %r12,%rdi
0xffffffffa14468c5 <ldiskfs_mb_regular_allocator+597>: callq 0xffffffffa1444c70
<ldiskfs_mb_good_group>

RDX: 0000000000000001 - cr
ESI 0000000000000008 - group
RDI: ffff881f52e24000 - allocation
context

crash> struct ldiskfs_allocation_context
ffff881f0ba1b300
struct ldiskfs_allocation_context {
ac_g_ex = {
fe_logical = 370218,
fe_start = 13604,
fe_group = 753396,
fe_len = 6614
...
ac_groups_scanned = 0,
ac_found = 0,

allocator started
scanning from
group 753402 and
now processing
group 8

© 2019 Cray Inc.

Problem
requested

Window Window

Allocator processes whole disk trying to find large continuous range of
blocks. Disks become larger, the problem becomes visible.

unfragmented fragmented

© 2019 Cray Inc.

Buddy allocator

Conditions:
• File size is bigger then
s_mb_stream_request or
group preallocation can’t find
required blocks

• Required blocks are not
found in inode preallocation
list

• Required blocks are not
found in locality group pre-
alloc space

Actions:
• Normalizing the request for size

and alignment
• Pre-allocate the blocks
• Place the pre-allocated blocks

into the pre-allocated block
space or inode pre-allocated
space (this decision is based on
EXT4_MB_HINT_GROUP_ALL
OC flag)

© 2019 Cray Inc.

Buddy allocator loops
4 loops across all groups of filesystem

• cr=0, try to allocate ^2 bytes

• cr=1, average free range has
required size

• cr=2 Group has enough data

• cr=3 use any free data

Based on the file size requested (offset +
requested size) block count is rounded to
the nearest large block range e.g.: (16K,
32K, 64K, 128K, 256K, 512K, 1M, 2M,
4M, 8M, etc. – preallocation table)

© 2019 Cray Inc.

Tunable and statistic

7

mb_min_to_scan When good group (is_group_good) is found, the allocator
will start to scan extents. mb_min_to_scan is extents
count that must be scanned before the allocator decides
on a possible group, mb_max_to_scan is the extents
count after the allocator search is interrupted

mb_max_to_scan

s_bal_reqs number of requests
s_bal_allocated found target chunk
s_bal_ex_scanned how much extents scanned
s_bal_goals block is allocated from goal
s_bal_breaks allocator was interrupted

(because of s_mb_max_to_scan)
s_bal_2orders 2^orders hits
Statistic is shown on fs unmount (ext4_mb_release()) if mb_stats is set.

© 2019 Cray Inc. 8

Solutions

Adjust preallocation table to limit
preallocation window grow

Preallocation table:
16 32 64 128 256 512 1024 2048

512

Modified preallocation table:
16 32 64 128 256 512

Exclude all impossible values

Force to skip ”useless” allocator
loops

© 2019 Cray Inc.

Preallocation table solution
/proc/fs/ldiskfs/<disk>/mb_groups

/proc/fs/ldiskfs/<disk>/prealloc_table

Processing script

mballoc normalization

preallocation

Window

[2^0 … 2^13]
[0 1 1 0 0 1 0 1 1 1 1 0 0 0]
[1 0 1 1 2 2 1 1 3 1 1 1 0 0]
[0 0 0 0 0 1 0 0 1 0 0 1 0 0]

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 2 4 8 16 32 64 128 256 512 1024

Offset + requested size = 3000

Normalized request 4096 but is limited to 1024

prealloc_table should be adjusted periodically to

reflect current state

© 2019 Cray Inc.

Before table adjustment

1. Set too large preallocation table and estimate write speed

echo "256 512 1024 2048 4096 8192 16384”
dd if=/dev/zero of=/mnt/mntpnt/O/foofile bs=1048576 count=1024 conv=fsync
1073741824 bytes (1.1 GB) copied, 11.2427 s, 95.5 MB/s

mballoc: 262144 blocks 153 reqs (137 success)
mballoc: 2046 extents scanned, 127 goal hits, 1 2^N hits, 10 breaks, 0 lost

© 2019 Cray Inc.

After table adjustment

2. Adjust preallocation table based on mb_groups output

cat /proc/fs/ldiskfs/loop1/mb_groups > $TMP/table.dat
sh build_prealloc.sh $TMP/table.dat > $TMP/prealloc.txt

cat $TMP/prealloc.txt > /proc/fs/ldiskfs/loop1/prealloc_table

dd if=/dev/zero of=/mnt/fs2ost/O/foofile bs=1048576 count=1024 conv=fsync
1073741824 bytes (1.1 GB) copied, 9.22825 s, 116 MB/s

mballoc: 262143 blocks 243 reqs (240 success)
mballoc: 141 extents scanned, 113 goal hits, 129 2^N hits, 0 breaks, 0 lost

© 2019 Cray Inc.

Issues

12

LU-12335 ldiskfs: fixed size preallocation table. Preallocation table
read/write code is racy. There is a possibility of accessing memory
outside of allocated table. Make preallocation table fixed size. Array with
64 long int values are enough for any configuration and don’t need much
memory. With such array races are not possible.

Lustre FS changes ext4 sources
https://github.com/tweag/lustre/blob/master/ldiskfs/kernel_patches/
patches/rhel7/ext4-prealloc.patch
The reason - add striping.
Simplified seq file is used - only show() method
(mb_prealloc_table_seq_show)
and ext4_mb_prealloc_table_proc_write - set table. The patch
changes normalization algorithm.

https://jira.whamcloud.com/browse/LU-12335
https://github.com/tweag/lustre/blob/master/ldiskfs/kernel_patches/patches/rhel7/ext4-prealloc.patch

© 2019 Cray Inc.

Loops Skipping Solution

Start here if 75%
of disk is filled

Loop 0

Loop 1

Loop 2

Loop 3

Start here if 85%
of disk is filled

Start here if 95%
of disk is filled

force to skip
useless loops

based on FS
condition

© 2019 Cray Inc.

Usage

mballoc: (349, 796, 0) useless c(0,1,2) loops

mballoc: (0, 0, 0) skipped c(0,1,2) loops

New strings are added to statistics

output (if mb_stats enabled)

echo "75" > /sys/fs/ldiskfs/loop1/mb_c1_threshold

echo ”85" > /sys/fs/ldiskfs/loop1/mb_c2_threshold

echo ”95" > /sys/fs/ldiskfs/loop1/mb_c3_threshold

© 2019 Cray Inc.

Testing
• Testing was made on ~100TB LDISKFS

OST target:
• dd on non-fragmented block device shows

1.2 Gb/s write and 1.0 GB/s read
• Fragment partition with pattern: 50 free

blocks – 50 occupied blocks using
patched debugfs

• 99.24% write performance reduction,
reading not changed

• Set skip c0 loop if disk fragmented > 50%
• Write performance is not changed
• Set skip c0 and c1 if disk fragmented >

50%
• Write performance 557 MB/s – 55% from

original

© 2019 Cray Inc.

Heuristics

с0 с1

no ^2 blocks found

1.5x free space

Disable loops based on
result of processing

Reenable based on free
space

с0 с1

no ^2 blocks found

New non zero
in mb_groups

Disable loops based on
result of processing

Reenable based on largest
free blocks range

© 2019 Cray Inc.

Other possible solutions

17

big_alloc ext4 feature: blocks are grouped to clusters –
fewer metadata, fewer groups

buddy allocator has several loops over all groups to obtain
good one. But steps take similar actions so can be
merged into single step

track maximal contiguous block region and stop extending
allocation window if it is larger than maximum

© 2019 Cray Inc.

Summary

LU-12103 patch is being landed, and it adds:

• Additional allocator statistics

• Options to enable heuristic for allocator loops skipping

• Heuristic, based on free space information

Ext4 is ready to accept the patch if no manual options are
needed by user.

Preallocation table adjusting script is being tested on real
cluster environment.

https://jira.whamcloud.com/browse/LU-12103

© 2019 Cray Inc.

SAFE HARBOR
STATEMENT

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

19

QUEST IONS?

blagodarenko

linkedin.com/in/artem-
blagodarenko-a68b892b/

artem.blagodarenko@gmail.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

