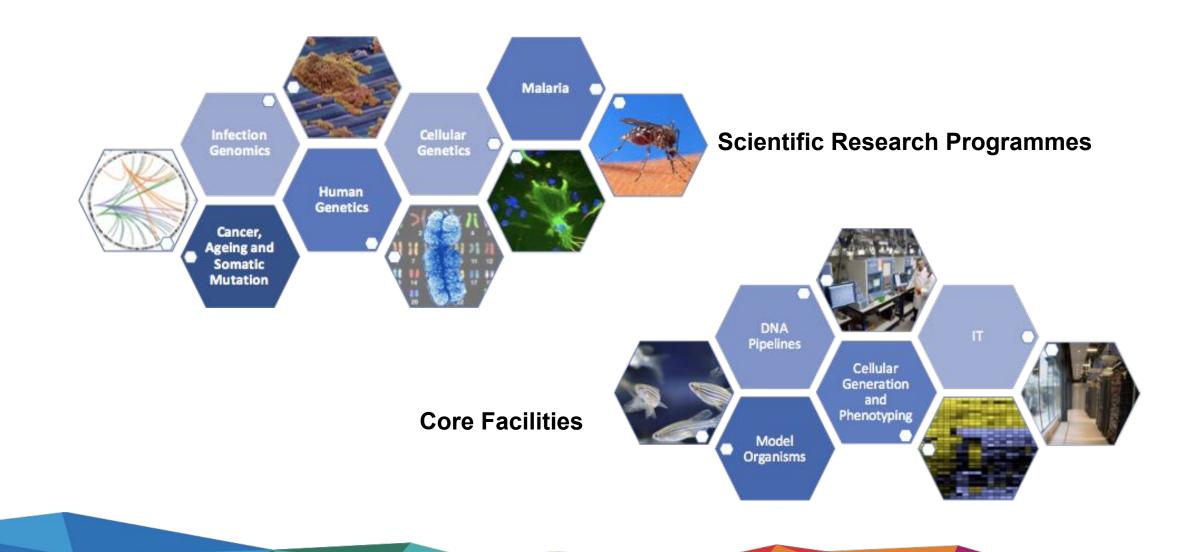


Experiences in providing secure multi-tenant Lustre access to OpenStack


Dave Holland <dh3@sanger.ac.uk> Wellcome Trust Sanger Institute

Sanger Science

The Sanger Institute Traditional HPC Environment

LSF 9

~10,000 cores in main compute farm

- ~10,000 cores across smaller project-specific farms
- 15PB Lustre high performance storage
- Limited security "isolation" is based on POSIX file permissions
- Limited flexibility no root access, incompatible software dependencies etc
- Pipelines and stacks are complex, and scientific reproducibility is hard

HPC and Cloud computing are complementary

Traditional HPC

- Highest possible performance
- A mature and centrally managed compute platform
- High performance Lustre filesystems for data intensive analysis

Flexible Compute

- Full segregation of projects ensures data security
- Developers no longer tied to a single stack
- Reproducibility through containers / images and infrastructure-as-code

But there's a catch or two...

- Large number of traditional/legacy pipelines
 - They require a performant shared POSIX filesystem, while cloud workloads support object stores
- We do not always have the source code or expertise to migrate
- We need multi-gigabyte per second performance
- The tenant will have root
 - and could impersonate any user, but Lustre trusts the client's identity assertions, just like NFSv3
- The solution must be simple for the tenant and administrator

Our OpenStack History

Training and experiments with RHOSP6 (Juno)

WELLCOME

CAMPUS

2015

2016

2017

GENOME

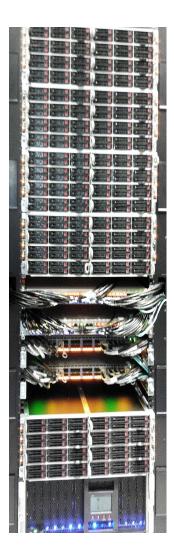
• December: pilot "beta" system on cobbled-together hardware

- Science-as-a-Service service for biotech spin-out customers
- July: Kilo "gamma" system for internal scientists. "Proper" Ceph storage.
- September: full scale hardware installation

- January: Production "delta" system opened to early adopters (RHOSP8, Liberty)
- February: Sanger Flexible Compute Environment announced
- August: test deployments of next iteration "epsilon" (RHOSP10, Newton)

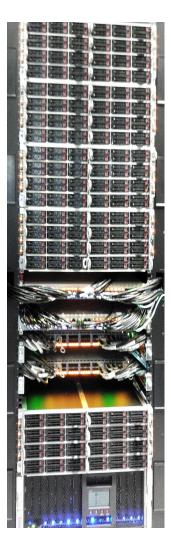
Production OpenStack

- 107 Compute nodes (Supermicro) each with:
 - 512GB of RAM, 2x 25Gbit/s network interfaces,
 - 1x 960GB local SSD, 2x Intel E52690v4 (14 cores @ 2.6Ghz)
- 6 Control nodes (Supermicro) allows 2 versions side by side
 - 256 GB RAM, 2x 100 GB/s network interfaces,
 - 1x 120 GB local SSD, 1x Intel P3600 NVMe (/var)
 - 2x Intel E52690v4 (14 cores @ 2.6Ghz)
- Total of 53 TB of RAM, 2996 cores, 5992 with hyperthreading
- RedHat OSP8 ("Liberty") deployed with Triple-O



Ceph Storage Layer

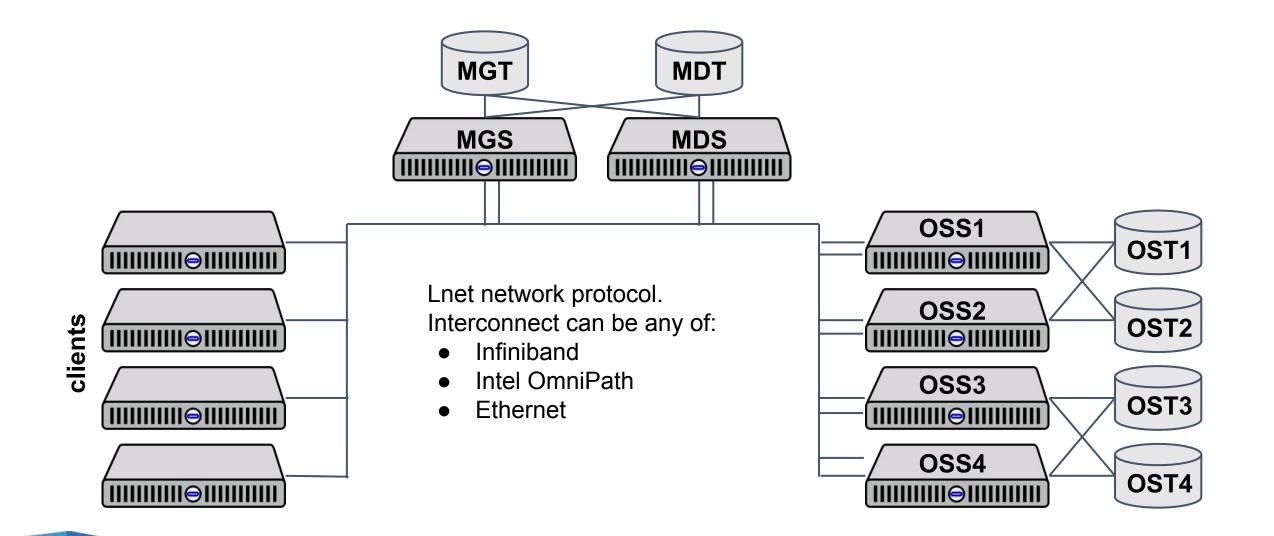
- 9 42 Storage nodes (Supermicro) each with:
 - 512GB of RAM, 2x Intel E52690v4 (14 cores @ 2.6Ghz)
 - 2x 100Gbit/s network interfaces,
 - 60x 6TB SAS discs, 2 system SSD, 4TB of Intel P3600 NVMe used for journal.
- Ubuntu Xenial
- 3PB of disc space, 1PB usable. Now 14PB, ~4.5PB usable!
- Single node (1.3 GBytes/sec write, 200 MBytes/sec read)
- Ceph benchmarks imply 7 GBytes/second.
- Rebuild traffic of 20 GBytes/second.



Networking

- 3 Racks of equipment, 24 KW load per rack.
- 10 Arista 7060CX-32S switches.
 - 1U, 32 * 100Gb/s -> 128 * 25Gb/s.
 - Hardware VXLAN support integrated with OpenStack^{*}
 - Layer two traffic limited to rack, VXLAN used inter-rack.
 - Layer three between racks and interconnect to legacy systems.
 - All network switch software can be upgraded without disruption.
 - True Linux systems.
 - 400 Gb/s from racks to spine, 160 Gb/s from spine to legacy systems.

(* VXLAN in ml2 plugin not used in first iteration because of software issues)

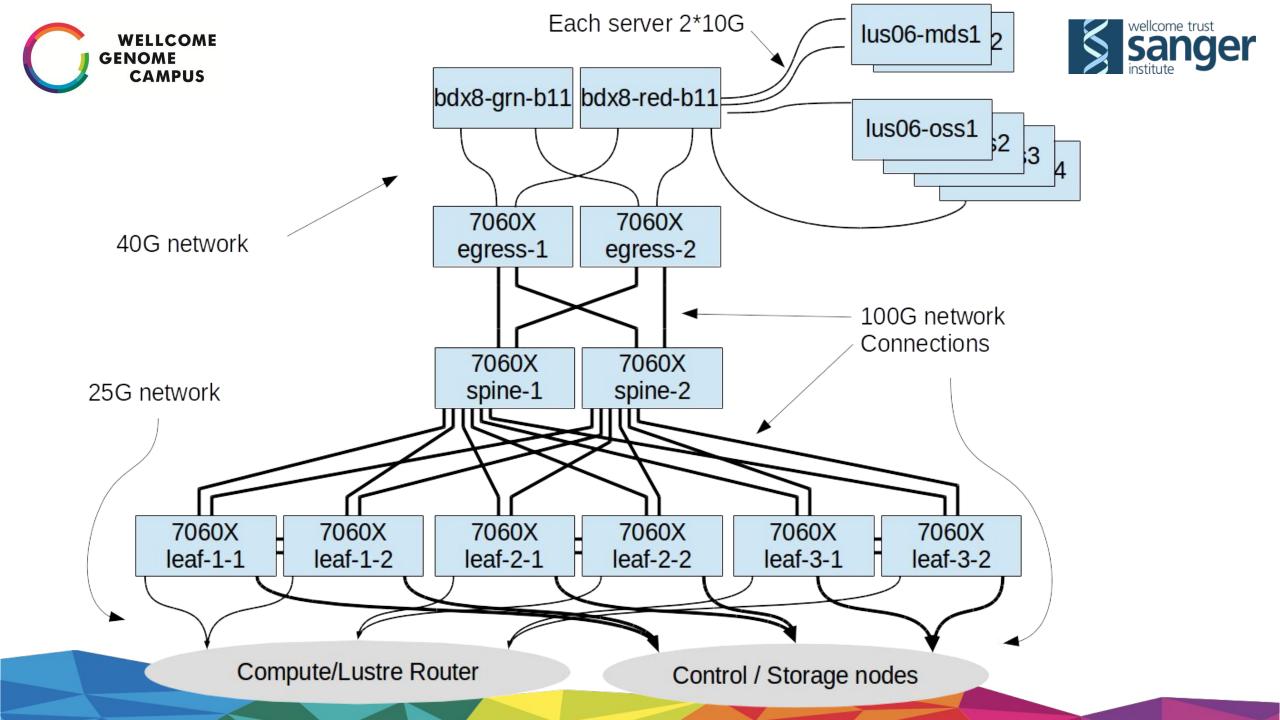

Crash course: Lustre Architecture

WELLCOME

CAMPUS

GENOME

Lustre hardware



6+ year old hardware

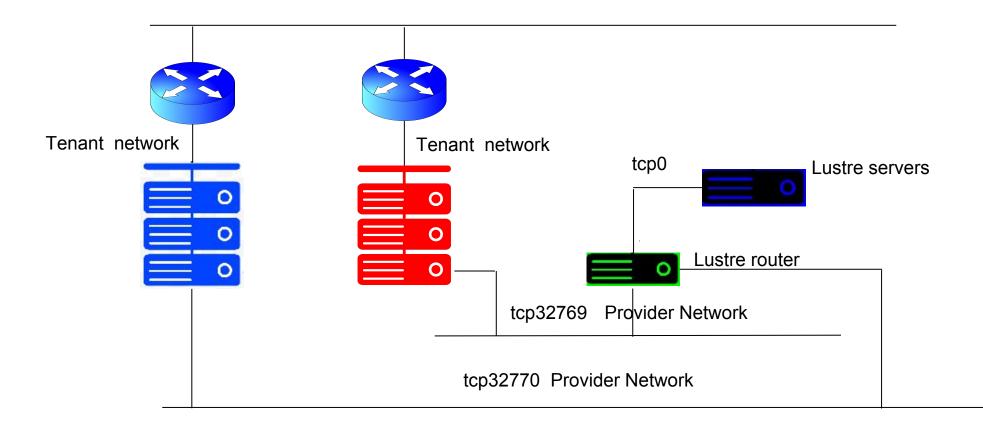
- 4x Lustre object storage servers
 - Dual Intel E5620 @ 2.40GHz
 - 256GB RAM
 - Dual 10G network
 - lustre: 2.9.0.ddnsec2
 - <u>https://jira.hpdd.intel.com/browse/LU-9289</u> (landed in 2.10)
- OSTs from DDN SFA-10k
 - 300x SATA, 7200rpm , 1TB spindles

We have seen this system reach 6 GByte/second in production

Lustre 2.9 features

- Each tenant's I/O can be squashed to their own unique UID/GID
- Each tenant is restricted to their own subdirectory of the Lustre filesystem

It might be possible to treat general access outside of OpenStack as a separate tenant with:


- a UID space reserved for a number of OpenStack tenants
- only a subdirectory exported for standard usage

Public network

Lustre server Per-tenant UID mapping

Allows UIDs from a set of NIDs to be mapped to another set of UIDs These commands are run on the MGS:

lctl nodemap_add \${TENANT_NAME} lctl nodemap_modify --name \${TENANT_NAME} --property trusted --value 0 lctl nodemap_modify --name \${TENANT_NAME} --property admin --value 0 lctl nodemap_modify --name \${TENANT_NAME} --property squash_uid --value \${TENANT_UID} lctl nodemap_modify --name \${TENANT_NAME} --property squash_gid --value \${TENANT_UID} lctl nodemap_add_idmap --name \${TENANT_NAME} --idtype uid --idmap 1000:\${TENANT_UID}

Lustre server: Per-tenant subtree restriction

Constrains client access to a subdirectory of a filesystem.

mkdir /lustre/secure/\${TENANT_NAME}
chown \${TENANT_NAME} /lustre/secure/\${TENANT_NAME}

Set the subtree root directory for the tenant:

lctl set_param -P nodemap.\${TENANT_NAME}.fileset=/\${TENANT_NAME}

Lustre server: Map nodemap to network

lctl nodemap_add_range --name \${TENANT_NAME} --range \
[0-255].[0-255].[0-255].[0-255]@tcp\${TENANT_UID}

And this command adds a route via a Lustre network router. This is run on all MDS and OSS (or the route added to /etc/modprobe.d/lustre.conf)

lnetctl route add --net tcp\${TENANT_UID} --gateway \${LUSTRE_ROUTER_IP}@tcp

In the same way a similar command is needed on each client using TCP

OpenStack: Network configuration

neutron net-create LNet-1 --shared --provider:network_type vlan \
--provider:physical_network datacentre --provider:segmentation_id \
\${TENANT_PROVIDER_VLAN_ID}

neutron subnet-create --enable-dhcp --dns-nameserver 172.18.255.1 --no-gateway \
--name LNet-subnet-1 --allocation-pool start=172.27.202.17,end=172.27.203.240 \
172.27.202.0/23 \${NETWORK_UUID}

openstack role create LNet-1_ok

For each tenant user that needs to create instances attached to this Lustre network:

openstack role add --project \${TENANT_UUID} --user \${USER_UUID} \${ROLE_ID}

OpenStack policy

Simplify automation by minimial change to /etc/neutron/policy.json

"get_network": "rule:get_network_local"

/etc/neutron/policy.d/get_networks_local.json then defines the new
rule:

"get_network_local": "rule:admin_or_owner or rule:external or rule:context_is_advsvc or rule:show_providers or (not rule:provider_networks and rule:shared)"

OpenStack policy

/etc/neutron/policy.d/provider.json is used to define networks and their mapping to roles, and allow access to the provider network.

"net_LNet-1": "field:networks:id=d18f2aca-163b-4fc7-a493-237e383c1aa9",
"show_LNet-1": "rule:net_LNet-1 and role:LNet-1_ok",
"net_LNet-2": "field:networks:id=169b54c9-4292-478b-ac72-272725a26263",
"show_LNet-2": "rule:net_LNet-2 and role:LNet-2_ok",
"provider_networks": "rule:net_LNet-1 or rule:net_LNet-2",
"show_providers": "rule:show_LNet-1 or rule:show_LNet-2"

Restart Neutron - can be disruptive!

Physical router configuration

- Repurposed Nova compute node
 - RedHat 7.3
 - Lustre 2.9.0.ddnsec2
 - Mellanox ConnectX-4 (2*25GbE)
 - Dual Intel E5-2690 v4 @ 2.60GHz
 - 512 GB RAM

Connected in a single rack so packets from other racks will have to transverse the spine. No changes from default settings.

Client virtual machines

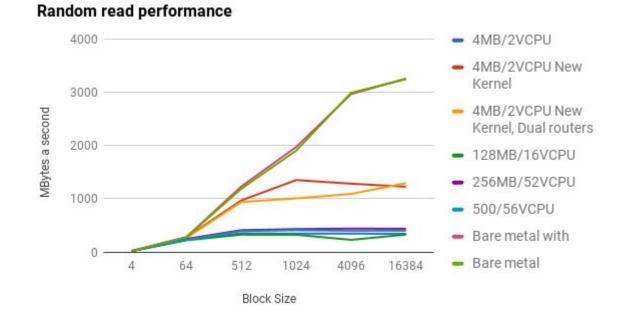
- 2 CPU
- 4 GB RAM
- CentOS Linux release 7.3.1611 (Core)
- Lustre: 2.9.0.ddnsec2
- Two NICs
 - Tenant network
 - Tenant-specific Lustre provider network

Testing procedure - vdbench

http://bit.ly/2rjRuPP The Oracle download page (version 5.04.06)

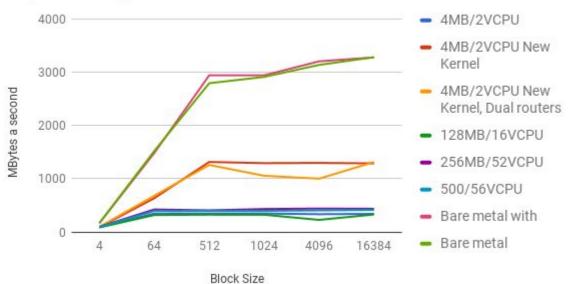
Creates a large pool of files on which tests are later run.

- Sequential and Random IO, block sizes of 4k,64k,512k,1M,4M,16M.
- Each test section is run for 5 minutes.
- Threads are used to increase performance.
- No performance tuning attempted.


Filesets and uid mapping have no effect

Instance size has little effect

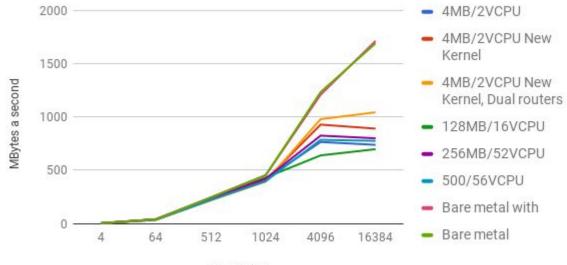
WELLCOME


CAMPUS

GENOME

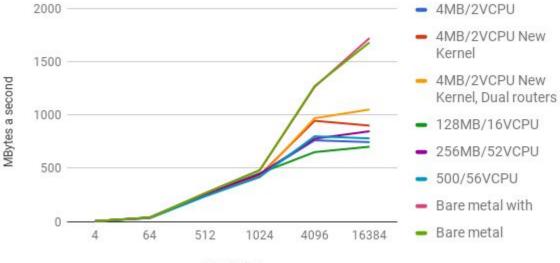
Sequential read performance

Single client read performance



Random write performance

WELLCOME

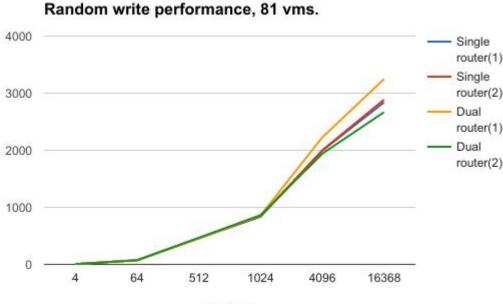

GENOME CAMPUS

Block Size

Sequential write performance

Single client write performance

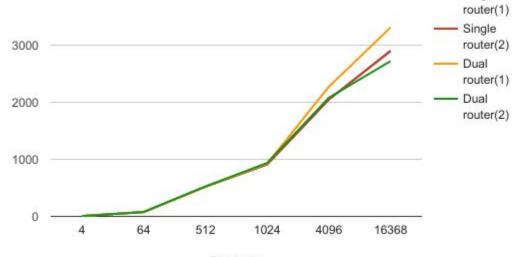
Block Size



Filesets and UID mapping overhead is insignificant.

Read performance (Virtual machine, old kernel) ≅ 350 MB/s Write performance (Virtual machine, old kernel) ≅ 750 MB/s Read performance (Virtual machine, new kernel) ≅ 1300 MB/s Write performance (Virtual machine, new kernel) ≅ 950 MB/s Read performance (Physical machine) ≅ 3200 MB/s

Multiple VMs, aggregate write performance, metal LNet routers

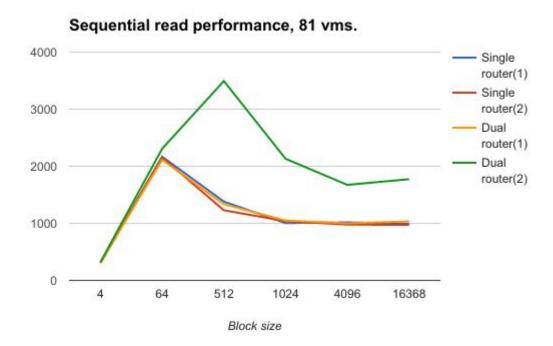

WELLCOME

CAMPUS

GENOME

Block size

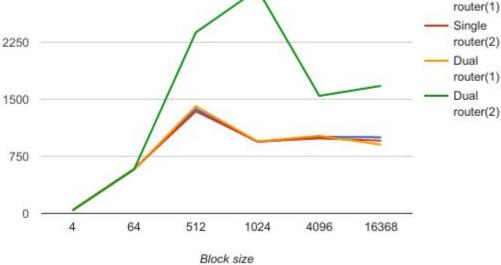
Sequential write performance, 81 vms. 4000


Single

Block size

Multiple VMs, aggregate read performance, metal LNet routers

3000

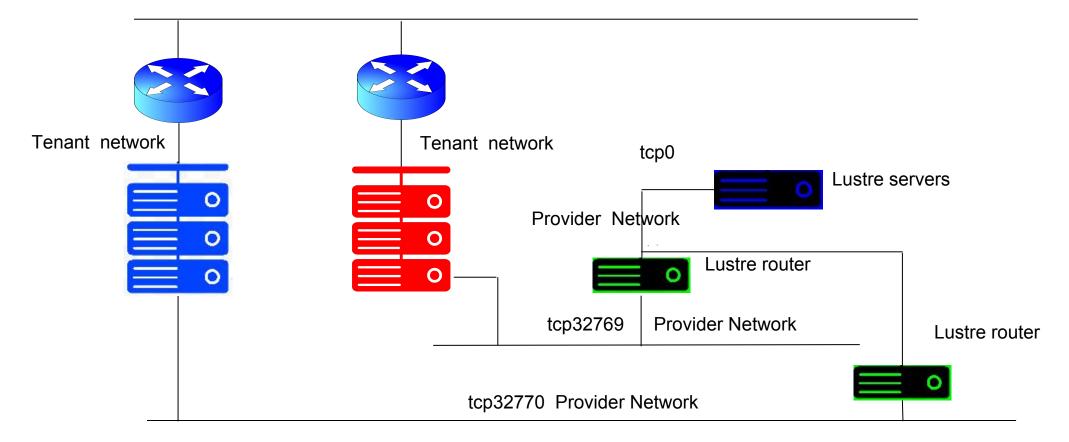


wellcome trust

sanger

Single

Virtualised Lustre routers


- We could see that bare metal Lustre routers gave acceptable performance
- We wanted to know if we could virtualise these routers
 - Each tenant could have their own set of virtual routers
 - Fault isolation
 - Ease of provisioning routers
 - No additional cost
- Increases east-west traffic, but that's OK.

Public network

As each tenant has its own set of Lustre routers:

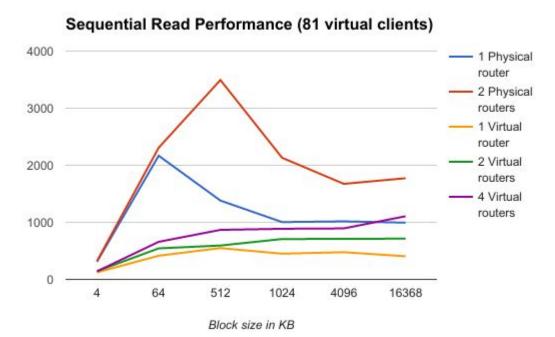
- The traffic to a different tenant does not go to a shared router
- A Lustre router could be compromised without directly compromising another tenant's data - the filesystem servers will not route data for @tcp1 to the router @tcp2
- Either a second Lustre router or the Lustre servers would need to be compromised to intercept or reroute the data

The routed Lustre provider network (tcp32769 etc) required that port security was disabled on the virtual Lustre router ports.

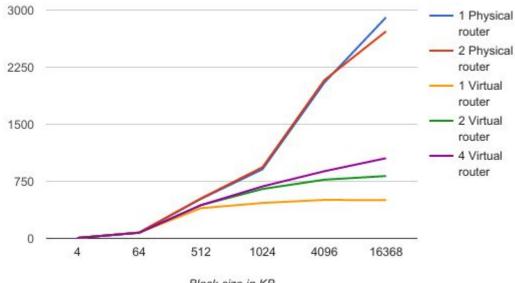
neutron port-list | grep 172.27.70.36 | awk '{print \$2}'

```
08a1808a-fe4a-463c-b755-397aedd0b36c
```

neutron port-update --no-security-groups 08a1808a-fe4a-463c-b755-397aedd0b36c

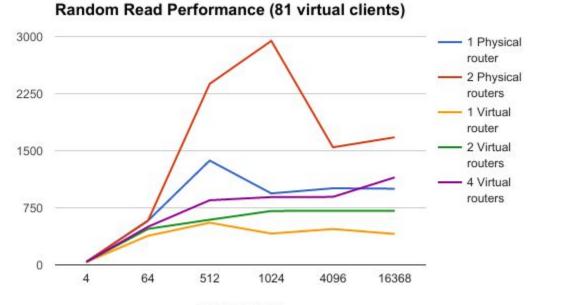

neutron port-update 08a1808a-fe4a-463c-b755-397aedd0b36c \
 --port-security-enabled=False

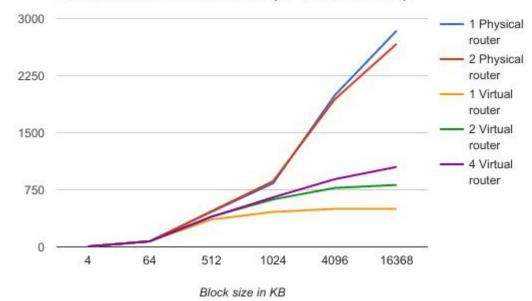
http://kimizhang.com/neutron-ml2-port-security/


This is due to a race condition in the Liberty release, which can be avoided by adding the Lustre provider network interface when the instance is created.

Virtual Lnet routers: Sequential performance

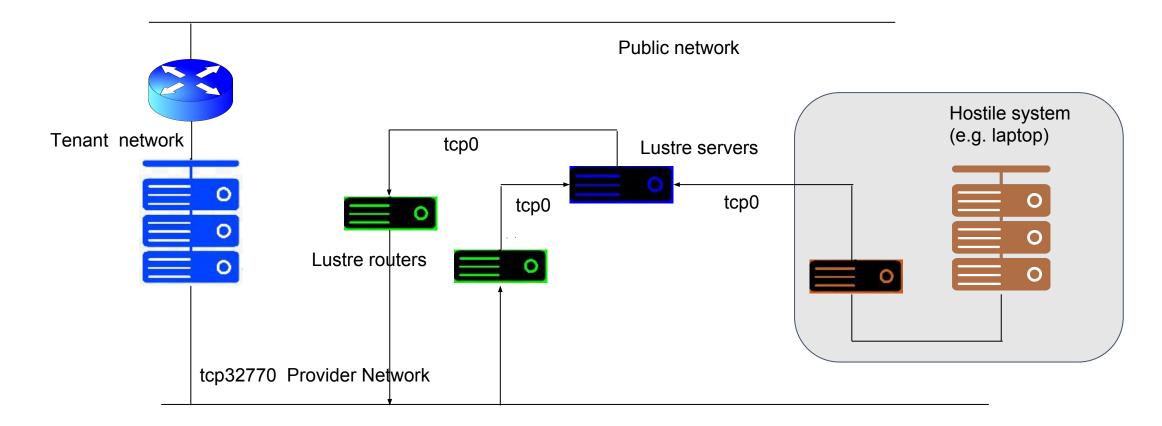
Sequential Write Performance (81 virtual clients)


Block size in KB


Virtual Lnet routers: Random Performance

Block size in KB

Random Write Performance (81 virtual clients)



Asymmetric routing?

http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html

Conclusions

- Follow our activities on http://hpc-news.sanger.ac.uk
- Isolated POSIX islands can be deployed with Lustre 2.9+
- Performance is acceptable
- Lustre routers require little CPU and memory
- Physical routers work and can give good locality for network usage
- Virtual routers work, can scale and give additional security benefits
- Next steps:
 - Improve configuration automation
 - Check port security issue is fixed in Newton
 - Improve network performance (MTU, OpenVSwitch etc).

Acknowledgements

DDN: Sébastien Buisson, Thomas Favre-Bulle, Richard Mansfield, James Coomer **Sanger Informatics Systems Group: Pete Clapham**, **James Beal**, John Constable, Helen Cousins, Brett Hartley, **Dave Holland**, **Jon Nicholson**, **Matthew Vernon**