
SCALABLE CHANGELOGS

DISTRIBUTION WITH CLAP

Henri DOREAU | CEA/DAM

henri.doreau@cea.fr

BACKGROUND

MDS changelogs as a notification mechanism

The metadata servers can provide us with a stream of changelogs records

Used as an asynchronous notification facility

Interested parties must subscribe (register/deregister) and poll for records

Unbalanced situations may occur…

One MDS/Numerous subscribers

One reader/Numerous MDS

typically: robinhood facing DNE

As well as clearly suboptimal ones

Ephemeral readers constantly registering/deregistering

Ephemeral readers going away for a long time before re-appearing

Readers filtering out most records

…but getting the whole stream anyway

| PAGE 2 LAD’14 | SEPTEMBER 22-23, 2014

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

GOALS

Based on the existing changelogs API

Broadcast the stream (publish/subscribe) to numerous unregistered clients

Distribute stream processing

Re-order the records to optimize final processing

Can drop records that cancel out each other (create/unlink patterns)

Can group records by target FID or parent FID

Offload this work from reader applications (e.g.: Robinhood Policy Engine)

More generally

Stream pre-processing

Versatile distribution scheme

Relaxed constraints on the MDS

| PAGE 3 LAD’14 | SEPTEMBER 22-23, 2014

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

CLAP PROXY

| PAGE 4

LAD’14 | SEPTEMBER 22-23, 2014

CLAP LUSTRE CHANGELOGS PROXY

Stands for changelogs Aggregate & Publish

Client/Server architecture

libclapclient

clapd

processing modules

Essentially a Lustre changelogs proxy

Seen as a single changelogs reader by Lustre

Lives in userland

Re-ordering and distribution schemes implemented as loadable modules

Official CEA project

Freely distributed (https://github.com/cea-hpc/clap.git)

| PAGE 5 LAD’14 | SEPTEMBER 22-23, 2014

LIBCLAPCLIENT

As close as possible from liblustreapi

Proxified channel (default)

clap_changelog_start()

clap_changelog_receive()

clap_changelog_clear()

clap_changelog_fini()

clap_changelog_setopt()

NULL-channel

CLAP_CL_DIRECT flag to clap_changelog_start()

Other flags mapped to their lustreapi equivalents

Functions then directly call their lustreapi siblings

Client only needs the server URI (taken from env)

| PAGE 6 LAD’14 | SEPTEMBER 22-23, 2014

CLAPD

Implements all the logic

All communications based on the (excellent) Zeromq message passing library

Purpose-specific policies

| PAGE 7 LAD’14 | SEPTEMBER 22-23, 2014

Processing module

MDS clapd

Dequeue

Subscribers

Enqueue

TRANSACTION CHAIN

Transactionnal aspect remains preserved (or not, you choose)

Reader applications acknowledge records up to a given index

Policy gets informed

Policy instructs clapd what/when to acknowledge to the MDS

Examples:

Can use min(acknowledgements)

Can decide to acknowledge unread records if there are no readers (broadcast)

| PAGE 8 LAD’14 | SEPTEMBER 22-23, 2014

UNDER THE HOOD: MESSAGE PASSING

Lightweight message passing library

Adaptive patterns (REQ/REP, PUB/SUB, PUSH/PULL…)

Asynchronous I/O

Familiar API (close to BSD sockets)

Excellent documentation

Used for internodes and interthread communications

The lockless monster isn’t a monster anymore!

Free and actively developed software (see http://zeromq.org)

| PAGE 9 LAD’14 | SEPTEMBER 22-23, 2014

UNDER THE HOOD: POLICIES

Aggregation and distribution modules

Policies implemented as modules

executed server-side

Distributed as shared libraries

Expose a pre-defined API

Enqueue records (allow re-ordering)

Dequeue records (allow distribution strategies)

Indicate up to which record # to clear server-side

| PAGE 10 LAD’14 | SEPTEMBER 22-23, 2014

UNDER THE HOOD: POLICIES (2)

N collaborative threads

One changelogs reader thread per MDS

Requests push/pulled to policy worker threads

Can share nothing or operate a common data structure

| PAGE 11 LAD’14 | SEPTEMBER 22-23, 2014

MDS0

MDS1

MDS2

clapd Subscribers

Reader0

Reader1

Reader2

MPMC ring
buffer

Workers

UNDER THE HOOD: BATCHING

Aggregation

Policies can internally re-order records as they want

Records are batch sent to the client

Policies can decide how to deliver stream to a given client

Can group by target FID

Can group by source MDS

Can rely on simple time windowing

| PAGE 12 LAD’14 | SEPTEMBER 22-23, 2014

DISTRIBUTION STRATEGIES

| PAGE 13

LAD’14 | SEPTEMBER 22-23, 2014

LOAD BALANCING

| PAGE 14 LAD’14 | SEPTEMBER 22-23, 2014

Distribute stream processing between two instances of robinhood

Round-robin between end readers

MDS clapd

Subscribers

BROADCAST

| PAGE 15 LAD’14 | SEPTEMBER 22-23, 2014

Replicate stream to many ephemeral readers

Publish/Subscribe mechanism

MDS clapd

Subscribers

FILTERED BROADCAST

| PAGE 16 LAD’14 | SEPTEMBER 22-23, 2014

Replicate partial stream (filter out records)

Publish/Subscribe mechanism, records not matching client filters aren’t delivered

MDS clapd

Subscribers

CONCLUSION

| PAGE 17

LAD’14 | SEPTEMBER 22-23, 2014

CONCLUSION

Interesting prospectives

Already proven easy to extend/experiment with

Ongoing

Write more elaborated policies

Make clap able to stack them

Implement adaptive batching

Stabilize and mature the project

Not yet used in production

Improve resiliency

Clients currently can’t recover from a server (clapd) crash

Profile and optimize using at scale deployments

| PAGE 18 LAD’14 | SEPTEMBER 22-23, 2014

WANT TO TRY IT?

Disclaimer: clap is still under heavy work

Implemented in C (kernel style, minus tabs)

Limited dependencies (lustreapi/pthread/zmq)

LGPLv3

https://github.com/cea-hpc/clap.git (soon)

| PAGE 19 LAD’14 | SEPTEMBER 22-23, 2014

https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git

THANK YOU!

ANY QUESTION?

| PAGE 20

LAD’14 | SEPTEMBER 22-23, 2014

DAM Ile de France Commissariat à l’énergie atomique et aux énergies alternatives

CEA/DAM Ile de France| 91297 Arpajon Cedex

T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| PAGE 21

LAD’14 | SEPTEMBER 22-23, 2014

