DE LA RECHERCHE A L'INDUSTRIE

&a SCALABLE CHANGELOGS

DISTRIBUTION WITH CLAP

Henri DOREAU | CEA/DAM
henri.doreau@cea.fr

Reims
2014
www.cea.fr AW -

LUSTRE ADMINS & DEVELOPERS WORKSHOP

C2A BACKGROUND

MDS changelogs as a notification mechanism
B The metadata servers can provide us with a stream of changelogs records
B Used as an asynchronous notification facility
B Interested parties must subscribe (register/deregister) and poll for records

Unbalanced situations may occur...

B One MDS/Numerous subscribers

B One reader/Numerous MDS
typically: robinhood facing DNE

As well as clearly suboptimal ones
B Ephemeral readers constantly registering/deregistering
B Ephemeral readers going away for a long time before re-appearing
B Readers filtering out most records
...but getting the whole stream anyway

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 2

Based on the existing changelogs API

B Broadcast the stream (publish/subscribe) to numerous unregistered clients
B Distribute stream processing
B Re-order the records to optimize final processing
== Can drop records that cancel out each other (create/unlink patterns)
== Can group records by target FID or parent FID
== Offload this work from reader applications (e.g.: Robinhood Policy Engine)

More generally

B Stream pre-processing

B Versatile distribution scheme

B Relaxed constraints on the MDS

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 3

CLAP PROXY

C2A CLAP LUSTRE CHANGELOGS PROXY

Stands for changelogs Aggregate & Publish

B Client/Server architecture
== libclapclient
== Clapd
== pProcessing modules

B Essentially a Lustre changelogs proxy
== Seen as a single changelogs reader by Lustre
== Lives in userland
== Re-ordering and distribution schemes implemented as loadable modules

B Official CEA project
== Freely distributed ()

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 5

LIBCLAPCLIENT

As close as possible from liblustreapi

B Proxified channel (default)
== Clap changelog start ()
== Clap changelog receive ()
== Clap changelog clear ()
== Clap changelog fini ()
== Clap changelog setopt ()

B NULL-channel
== CLAP_CL_DIRECT flag to clap changelog start ()
== Other flags mapped to their lustreapi equivalents
== Functions then directly call their lustreapi siblings

B Client only needs the server URI (taken from env)

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 6

Implements all the logic

B All communications based on the (excellent) Zeromq message passing library
B Purpose-specific policies

Processing module

A

‘ ‘ Eaneue Dequeue

-
wos > A P> e - ——

— c—

Subscribers —

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 7

TRANSACTION CHAIN

Transactionnal aspect remains preserved (or not, you choose)
B Reader applications acknowledge records up to a given index
B Policy gets informed

B Policy instructs clapd what/when to acknowledge to the MDS
B Examples:

== Can use min(acknowledgements)
== Can decide to acknowledge unread records if there are no readers (broadcast)

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 8

C2A UNDER THE HOOD: MESSAGE PASSING

OMQ

B Lightweight message passing library

B Adaptive patterns (REQ/REP, PUB/SUB, PUSH/PULL...)
B Asynchronous I/O

B Familiar API (close to BSD sockets)

B Excellent documentation

B Used for internodes and interthread communications
== | he lockless monster isn’t a monster anymore!

B Free and actively developed software (see http://zeromg.org)

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 9

C2A UNDER THE HOOD: POLICIES

Aggregation and distribution modules

B Policies implemented as modules
== €Xecuted server-side

B Distributed as shared libraries
B Expose a pre-defined API
== ENqueue records (allow re-ordering)

== Dequeue records (allow distribution strategies)
== INdicate up to which record # to clear server-side

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 10

CZ2Q UNDER THE HOOD: POLICIES (2)

N collaborative threads

B One changelogs reader thread per MDS
B Requests push/pulled to policy worker threads
B Can share nothing or operate a common data structure

< N
Reader0
MDSO —

<)
Readerl
MDS1 S '—> clapd Subscribers

~
Reader2
MDS2 C—/ l

2!

MPMC ring
buffer

1 L

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 11

C2A UNDER THE HOOD: BATCHING

Aggregation

B Policies can internally re-order records as they want

B Records are batch sent to the client

B Policies can decide how to deliver stream to a given client
== Can group by target FID

== Can group by source MDS
== Can rely on simple time windowing

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 12

DISTRIBUTION STRATEGIES

C22A LOAD BALANCING

Distribute stream processing between two instances of robinhood

B Round-robin between end readers

= MDS —EE | — clapd

Subscribers

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 14

C2A BROADCAST

Replicate stream to many ephemeral readers

B Publish/Subscribe mechanism

MDS

clapd

T <

Subscribers

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 15

C2A FILTERED BROADCAST

Replicate partial stream (filter out records)

B Publish/Subscribe mechanism, records not matching client filters aren’t delivered

- MDS —gl | clapd

Lo

<
o = <«

&Aar <«

Subscribers

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 16

CONCLUSION

C2A CONCLUSION

Interesting prospectives
B Already proven easy to extend/experiment with
B Ongoing

== \\Write more elaborated policies

== Make clap able to stack them

== IMplement adaptive batching

Stabilize and mature the project
B Not yet used in production

B Improve resiliency
== Clients currently can’t recover from a server (clapd) crash

B Profile and optimize using at scale deployments

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 18

C2Aa WANTTO TRY IT?

Disclaimer: clap is still under heavy work ©
B Implemented in C (kernel style, minus tabs)
B Limited dependencies (lustreapi/pthread/zmq)

B LGPLv3

https://github.com/cea-hpc/clap.qgit (soon)

LAD’14 | SEPTEMBER 22-23, 2014 | PAGE 19

https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git

THANK YOU!

ANY QUESTION?

Commissariat a I'énergie atomique et aux énergies alternatives DAM lle de France
CEA/DAM lle de France| 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public & caractére industriel et commercial | RCS Paris B 775 685 019

