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Background

► Lustre architecture is becoming more heterogeneous

► Heterogeneous media are becoming common in a Lustre file system

• Different specifications: Capacity, Latency, Bandwidth, Reliability, Cost

• HDD for big capacity

• SSD/NVME for quick metadata operations

► Different network bandwidths to storage in a Lustre file system

• Different network bandwidths from a client to different OSTs

• Extreme condition: Local OSTs on a Lustre client

► Trend: multiple tiering levels inside Lustre

• Higher performance with acceptable cost

• Better QoS (Quality of service) guarantee

• Utilize storage locality

• Move the storage closer to compute

• Promote the entire efficiency of the storage system

Capacity

Low cost

ReliabilityBandwidth

Low
latency

HDD SSD
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Multiple Tiers of Lustre file system 

► Persistent Client Cache(LU-10918)

• Same namespace

• I/O pattern limitation

► Lustre on Demand

• Separate namespaces

• Integration with job scheduler

► Data on MDT with SSD/NVMe storage

• Size limitation of MDT

► OST pool based on SSD for cache

• Same namespace

► HSM storage

• Same namespace

• Transparent access to archived data

► Data movement between Lustre and Cloud/S3

• Separate namespaces

• WAN connection

PCC

LoD

DoM on 
NVMe

OST Pool on SSD

HSM

Cloud & Object
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Example architecture of a tiered Lustre file system
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Requirements for Data Management between Tiers  

► Data placement and location at the creation time

• PCC: rule-based policies to determine whether to create data on PCC directly

• Lustre on Demand: new files of the running job

• DoM with SSD/NVMe: stripe configuration inherited from parent

• OST pool: Data Placement Policy mechanism (LU-11234) for rule-based policies

► Data movement mechanism between tiers

• PCC: reuse HSM copytool

• Lustre on Demand: cp or MpiFileUtils

• DoM with SSD/NVMe: lfs migrate

• OST pool: lfs migrate

► Find the correct data to move between tiers

• The hottest file to keep in quick tiers

• The coldest file to evict from quick tiers

• Cache replacement policy is very important
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Why Cache Replacement Policy is Important?

► Cache replacement of Lustre tiering is expensive

► Bad cache replacement hurts performance a lot

Upper tier

Hottest files on upper tier

Coldest files on upper tier

Step 1: Find coldest 
files to evict 

Lower tier

Step 2: Evict coldest 
Files to lower tier

Step 4: Move the hottest 
files to upper tier

Step 3: find the hottest 
files in lower tier

Key principles:
1. Keep upper tier as full as possible
2. Only evict data when necessary
3. Evict as little as possible
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A Quantitative Analysis of Cache Replacement Effect 

► Perf[upper]: Performance of upper tier (Bytes/s)

► Perf[lower]: Performance of lower tier (Bytes/s)

► Access[cold]: The access amount of the evicted cold data (Bytes)

► Access[hot]: The access amount of the fetched hot data (Bytes)

► Overhead: The time overhead because of the cache replacement amount of the fetched hot data 
(Seconds)

Saved time because of cache replacement:

𝐴𝑐𝑐𝑒𝑠𝑠[𝑐𝑜𝑙𝑑]

𝑃𝑒𝑟𝑓[𝑢𝑝𝑝𝑒𝑟]
+

𝐴𝑐𝑐𝑒𝑠𝑠[ℎ𝑜𝑡]

𝑃𝑒𝑟𝑓[𝑙𝑜𝑤𝑒𝑟]
−

𝐴𝑐𝑐𝑒𝑠𝑠 ℎ𝑜𝑡

𝑃𝑒𝑟𝑓 𝑢𝑝𝑝𝑒𝑟
−

𝐴𝑐𝑐𝑒𝑠𝑠 𝑐𝑜𝑙𝑑

𝑃𝑒𝑟𝑓 𝑙𝑜𝑤𝑒𝑟
− 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

= 
𝐴𝑐𝑐𝑒𝑠𝑠 ℎ𝑜𝑠𝑡 −𝐴𝑐𝑐𝑒𝑠𝑠 𝑐𝑜𝑙𝑑 ⦁(𝑃𝑒𝑟𝑓 𝑢𝑝𝑝𝑒𝑟 −𝑃𝑒𝑟𝑓[𝑙𝑜𝑤𝑒𝑟])

𝑃𝑒𝑟𝑓 𝑢𝑝𝑝𝑒𝑟 ⦁𝑃𝑒𝑟𝑓[𝑙𝑜𝑤𝑒𝑟]
− 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
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Conclusions of the Quantitative Analysis 

► Performance difference between storage tiers should be huge

• Data movement between HDD tier and NVMe is likely to be worthwhile

• Data movement between busy OST and idle OST with the same media might not be worthwhile

► Access amount difference between the evicted data and the fetched data should be huge

• Evicted data should be as cold as possible

• Fetched data should be as hot as possible

• Finding the coldest/hottest data is important!

► Reducing data replacement overhead improves cache efficiency immediately

• The process of finding the coldest/hottest files need to be quick

• Parallel data copy/removal to reduce overhead of data movement

► Bad replacement is much worse than no replacement if data movement overhead is large

• Choosing the correct data to move is extremely important
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Why Is It Hard to Find the Coldest Files to Evict?

► Millions/billions of files to manage

• The size of file list exceeds memory size

• In-memory algorithms (LRU/heap) are not applicable

► The distribution of access time can’t be predicted precisely

• “Files not accessed for a given time period” might find too many/few files

► Coldest files might never be accessed since the beginning

• Files that have ever been accessed might not the coldest

• Need full scan of the whole tier

► Low time cost is critical

• Small finding overhead benefits cache efficiency a lot

• Entire scanning of the tier could take minutes or hours

• Policy engines needs O(N) time to scan all files, thus is too expensive

• The implementation needs to be O(1) time

Heap of

file heats

in memory

Hottest files are easier to find

Hottest files
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Solution: LCMP (Lustre Cache Management Policy)

► https://github.com/DDNStorage/lcmp

► Maintain a on-disk structure of file lists

• LCMP can support Lustre with billions of files

► The structure includes multiple levels

• Level 0 includes the most recently accessed files

• The lower levels include files that have not been access for a long time

► The structure is synced from time to time with Lustre file system

• Lustre Changelog indicates what files have been accessed recently

► Time is divided into epochs

• 1T, 2T, …, i * T, …

• At the end of each epoch, file list from top level downgrades to the lower level

► Each level has different time epoch of downgrading

• Lower levels have longer time epoch

► The coldest files can be found in the bottom level within O(1) time 
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General Idea of LCMP: LRU levels

Files accessed recently (clock - atime < T)

Files accessed between T*E and T time ago

Files accessed between T*E^2 and T * E time ago

Files accessed between T*E^N and T *E^(N - 1) time ago

…

Downgrade every T time

Downgrade every T * E time

Downgrade every T * E ^ N time

Files to evict 

Two parameters:

T: Time granularity
E: Exponential growth rate

File access adds FID 
into top level
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Implementation of LCMP

► Use directory tree to save the data structure

► Maintain a FID directory tree to map from FIDs to inodes

• All Lustre files has a corresponding file in the FID directory tree

• Hash of FIDs are used as the directory path names

► Maintain a LRU directory tree to track LRU lists of FIDs

• Each level of LRU is a directory under the LRU tree

• Each level directory contains a bunch of hardlinks pointing to FID inodes in FID directory tree

• The FID hardlinks of level 0 directory are generated by digesting Lustre Changelogs

• When the epoch end of this level is reached, parent directory of all hardlinks will be moved to the next level

► Hardlink number indicates whether the FID has been accessed more recently

• If hardlink number of a FID in the bottom level is larger than 2, then the file should have been accessed more 
recently

• Hardlinks with more recent access should be removed from that level
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Implementation of LCMP

Level 0

Level 1

…

Level N 

Changelog notification

Periodic 
downgrade &
cleanup

Hash of FIDs

Entire scan of the tier

Original injection 

FIDs to evict 
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Directory tree of LCMP

/LCMP

/LRU /FID

/L0 /L1 /L2 /Ln… /0000 /0001 /0002 /FFFF…

/fid2 /fid3 /fid1 /fid0 /fid1 /fid2 /fid3/fid0

Hardlinks

Downgrade

Coldest files

FID lookup
Changelog update

Hardlink cleanup
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Advantages of LCMP

► Good scalability

• The needed maximum inode number is the same with the Lustre file number

• The needed space per inode is small, because all files are empty

• A device with the same size of MDT should be enough

• LCMP can support large MDT with billions of files

• LCMP can scale well for DNE by creating a separate directory for each MDT

► High performance

• The coldest files can always be listed within O(1) time

• LCMP is not I/O intensive, so no need to use fancy storage

► Easy to configure

• Do not need to predict the distribution of access time precisely

• Time granularity (T) of 10 seconds and exponential growth rate (E) of 2 should be suitable for most use cases

► Wide applicability

• The same tool for different types of tiers (PCC, LoD, DoM, OST pool and HSM)

• No requirement for Lustre version, as long as Changlog is supported
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Future Optimization of LCMP

► Entire scan of the file system for original injection

• Walking through whole directory tree is an easy but general solution

• Policy engines are good candidates for quick injection

► File filtering for smarter policies

• Filter unnecessary files in Changelog records

• UID/GID/ProjID/JobID filtering to avoid evicting VIP’s data

► Customization and optimization and for different Lustre tiers

• PCC: Need to implement notification mechanism in local PCC storage, e.g. Linux inotify

• LoD: Need to integrate with job scheduler to predict I/O patterns for file filtering

• DoM: Need to filter files that are not DoM

• OST pool: Need to filter files that are not on quick OST pool

• HSM: Need to filter files that are already archived or should never be archived

Smaller time granularity 

Larger time granularity 
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Conclusions

► Multiple tiering levels inside Lustre are becoming common

► Cache replacement policy between layers is very important

► Finding coldest file to evict quickly is important but not easy

► We designed and implemented a tool to quickly find the coldest file: LCMP

• O(1) time to list the coldest file




