
Li Xi

Sept 2019

Cache Replacement Policies
for Storage Tiering of Lustre

whamcloud.com

Background

► Lustre architecture is becoming more heterogeneous

► Heterogeneous media are becoming common in a Lustre file system

• Different specifications: Capacity, Latency, Bandwidth, Reliability, Cost

• HDD for big capacity

• SSD/NVME for quick metadata operations

► Different network bandwidths to storage in a Lustre file system

• Different network bandwidths from a client to different OSTs

• Extreme condition: Local OSTs on a Lustre client

► Trend: multiple tiering levels inside Lustre

• Higher performance with acceptable cost

• Better QoS (Quality of service) guarantee

• Utilize storage locality

• Move the storage closer to compute

• Promote the entire efficiency of the storage system

Capacity

Low cost

ReliabilityBandwidth

Low
latency

HDD SSD

whamcloud.com

Multiple Tiers of Lustre file system

► Persistent Client Cache(LU-10918)

• Same namespace

• I/O pattern limitation

► Lustre on Demand

• Separate namespaces

• Integration with job scheduler

► Data on MDT with SSD/NVMe storage

• Size limitation of MDT

► OST pool based on SSD for cache

• Same namespace

► HSM storage

• Same namespace

• Transparent access to archived data

► Data movement between Lustre and Cloud/S3

• Separate namespaces

• WAN connection

PCC

LoD

DoM on
NVMe

OST Pool on SSD

HSM

Cloud & Object

whamcloud.com

Example architecture of a tiered Lustre file system

OST
OST

OSTs
OST

OST
OSTs

OST Pool Based on SSD

OST
OST

OSTs
OST

OST
OSTs

OST Pool Based on Nearline HDD

OST
OST

OSTs
OST

OST
OSTs

OST Pool Based on HDD

HSM Based on Tape

Client

Lustre on Demand based on NVMe

Client Client Client Client

Persistent Client Cache based on NVMe

Client Client Client

One Lustre Namespace

Archive/Restore

Attach/DetachStage-in/out

whamcloud.com

Requirements for Data Management between Tiers

► Data placement and location at the creation time

• PCC: rule-based policies to determine whether to create data on PCC directly

• Lustre on Demand: new files of the running job

• DoM with SSD/NVMe: stripe configuration inherited from parent

• OST pool: Data Placement Policy mechanism (LU-11234) for rule-based policies

► Data movement mechanism between tiers

• PCC: reuse HSM copytool

• Lustre on Demand: cp or MpiFileUtils

• DoM with SSD/NVMe: lfs migrate

• OST pool: lfs migrate

► Find the correct data to move between tiers

• The hottest file to keep in quick tiers

• The coldest file to evict from quick tiers

• Cache replacement policy is very important

whamcloud.com

Why Cache Replacement Policy is Important?

► Cache replacement of Lustre tiering is expensive

► Bad cache replacement hurts performance a lot

Upper tier

Hottest files on upper tier

Coldest files on upper tier

Step 1: Find coldest
files to evict

Lower tier

Step 2: Evict coldest
Files to lower tier

Step 4: Move the hottest
files to upper tier

Step 3: find the hottest
files in lower tier

Key principles:
1. Keep upper tier as full as possible
2. Only evict data when necessary
3. Evict as little as possible

whamcloud.com

A Quantitative Analysis of Cache Replacement Effect

► Perf[upper]: Performance of upper tier (Bytes/s)

► Perf[lower]: Performance of lower tier (Bytes/s)

► Access[cold]: The access amount of the evicted cold data (Bytes)

► Access[hot]: The access amount of the fetched hot data (Bytes)

► Overhead: The time overhead because of the cache replacement amount of the fetched hot data
(Seconds)

Saved time because of cache replacement:

𝐴𝑐𝑐𝑒𝑠𝑠[𝑐𝑜𝑙𝑑]

𝑃𝑒𝑟𝑓[𝑢𝑝𝑝𝑒𝑟]
+

𝐴𝑐𝑐𝑒𝑠𝑠[ℎ𝑜𝑡]

𝑃𝑒𝑟𝑓[𝑙𝑜𝑤𝑒𝑟]
−

𝐴𝑐𝑐𝑒𝑠𝑠 ℎ𝑜𝑡

𝑃𝑒𝑟𝑓 𝑢𝑝𝑝𝑒𝑟
−

𝐴𝑐𝑐𝑒𝑠𝑠 𝑐𝑜𝑙𝑑

𝑃𝑒𝑟𝑓 𝑙𝑜𝑤𝑒𝑟
− 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

=
𝐴𝑐𝑐𝑒𝑠𝑠 ℎ𝑜𝑠𝑡 −𝐴𝑐𝑐𝑒𝑠𝑠 𝑐𝑜𝑙𝑑 ⦁(𝑃𝑒𝑟𝑓 𝑢𝑝𝑝𝑒𝑟 −𝑃𝑒𝑟𝑓[𝑙𝑜𝑤𝑒𝑟])

𝑃𝑒𝑟𝑓 𝑢𝑝𝑝𝑒𝑟 ⦁𝑃𝑒𝑟𝑓[𝑙𝑜𝑤𝑒𝑟]
− 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

whamcloud.com

Conclusions of the Quantitative Analysis

► Performance difference between storage tiers should be huge

• Data movement between HDD tier and NVMe is likely to be worthwhile

• Data movement between busy OST and idle OST with the same media might not be worthwhile

► Access amount difference between the evicted data and the fetched data should be huge

• Evicted data should be as cold as possible

• Fetched data should be as hot as possible

• Finding the coldest/hottest data is important!

► Reducing data replacement overhead improves cache efficiency immediately

• The process of finding the coldest/hottest files need to be quick

• Parallel data copy/removal to reduce overhead of data movement

► Bad replacement is much worse than no replacement if data movement overhead is large

• Choosing the correct data to move is extremely important

whamcloud.com

Why Is It Hard to Find the Coldest Files to Evict?

► Millions/billions of files to manage

• The size of file list exceeds memory size

• In-memory algorithms (LRU/heap) are not applicable

► The distribution of access time can’t be predicted precisely

• “Files not accessed for a given time period” might find too many/few files

► Coldest files might never be accessed since the beginning

• Files that have ever been accessed might not the coldest

• Need full scan of the whole tier

► Low time cost is critical

• Small finding overhead benefits cache efficiency a lot

• Entire scanning of the tier could take minutes or hours

• Policy engines needs O(N) time to scan all files, thus is too expensive

• The implementation needs to be O(1) time

Heap of

file heats

in memory

Hottest files are easier to find

Hottest files

whamcloud.com

Solution: LCMP (Lustre Cache Management Policy)

► https://github.com/DDNStorage/lcmp

► Maintain a on-disk structure of file lists

• LCMP can support Lustre with billions of files

► The structure includes multiple levels

• Level 0 includes the most recently accessed files

• The lower levels include files that have not been access for a long time

► The structure is synced from time to time with Lustre file system

• Lustre Changelog indicates what files have been accessed recently

► Time is divided into epochs

• 1T, 2T, …, i * T, …

• At the end of each epoch, file list from top level downgrades to the lower level

► Each level has different time epoch of downgrading

• Lower levels have longer time epoch

► The coldest files can be found in the bottom level within O(1) time

whamcloud.com

General Idea of LCMP: LRU levels

Files accessed recently (clock - atime < T)

Files accessed between T*E and T time ago

Files accessed between T*E^2 and T * E time ago

Files accessed between T*E^N and T *E^(N - 1) time ago

…

Downgrade every T time

Downgrade every T * E time

Downgrade every T * E ^ N time

Files to evict

Two parameters:

T: Time granularity
E: Exponential growth rate

File access adds FID
into top level

whamcloud.com

Implementation of LCMP

► Use directory tree to save the data structure

► Maintain a FID directory tree to map from FIDs to inodes

• All Lustre files has a corresponding file in the FID directory tree

• Hash of FIDs are used as the directory path names

► Maintain a LRU directory tree to track LRU lists of FIDs

• Each level of LRU is a directory under the LRU tree

• Each level directory contains a bunch of hardlinks pointing to FID inodes in FID directory tree

• The FID hardlinks of level 0 directory are generated by digesting Lustre Changelogs

• When the epoch end of this level is reached, parent directory of all hardlinks will be moved to the next level

► Hardlink number indicates whether the FID has been accessed more recently

• If hardlink number of a FID in the bottom level is larger than 2, then the file should have been accessed more
recently

• Hardlinks with more recent access should be removed from that level

whamcloud.com

Implementation of LCMP

Level 0

Level 1

…

Level N

Changelog notification

Periodic
downgrade &
cleanup

Hash of FIDs

Entire scan of the tier

Original injection

FIDs to evict

whamcloud.com

Directory tree of LCMP

/LCMP

/LRU /FID

/L0 /L1 /L2 /Ln… /0000 /0001 /0002 /FFFF…

/fid2 /fid3 /fid1 /fid0 /fid1 /fid2 /fid3/fid0

Hardlinks

Downgrade

Coldest files

FID lookup
Changelog update

Hardlink cleanup

whamcloud.com

Advantages of LCMP

► Good scalability

• The needed maximum inode number is the same with the Lustre file number

• The needed space per inode is small, because all files are empty

• A device with the same size of MDT should be enough

• LCMP can support large MDT with billions of files

• LCMP can scale well for DNE by creating a separate directory for each MDT

► High performance

• The coldest files can always be listed within O(1) time

• LCMP is not I/O intensive, so no need to use fancy storage

► Easy to configure

• Do not need to predict the distribution of access time precisely

• Time granularity (T) of 10 seconds and exponential growth rate (E) of 2 should be suitable for most use cases

► Wide applicability

• The same tool for different types of tiers (PCC, LoD, DoM, OST pool and HSM)

• No requirement for Lustre version, as long as Changlog is supported

whamcloud.com

Future Optimization of LCMP

► Entire scan of the file system for original injection

• Walking through whole directory tree is an easy but general solution

• Policy engines are good candidates for quick injection

► File filtering for smarter policies

• Filter unnecessary files in Changelog records

• UID/GID/ProjID/JobID filtering to avoid evicting VIP’s data

► Customization and optimization and for different Lustre tiers

• PCC: Need to implement notification mechanism in local PCC storage, e.g. Linux inotify

• LoD: Need to integrate with job scheduler to predict I/O patterns for file filtering

• DoM: Need to filter files that are not DoM

• OST pool: Need to filter files that are not on quick OST pool

• HSM: Need to filter files that are already archived or should never be archived

Smaller time granularity

Larger time granularity

whamcloud.com

Conclusions

► Multiple tiering levels inside Lustre are becoming common

► Cache replacement policy between layers is very important

► Finding coldest file to evict quickly is important but not easy

► We designed and implemented a tool to quickly find the coldest file: LCMP

• O(1) time to list the coldest file

