DE LA RECHERCHE À L'INDUSTRIE

Predicting File Lifetimes With Machine Learning

www.cea.fr

Florent Monjalet Thomas Leibovici CEA/DAM September 24, 2019

CEA/DAM | September 24, 2019 | PAGE 1/21

- 2 Building the Models
- 3 Results

DE LA RECHERCHE À L'INDUSTRI

Introduction

Building the Models

Results

Hierarchical data storage:

- **Top tiers** (e.g. NVMe): high performance (latency, throughput), small capacity
- **Bottom tiers** (e.g. tape library): lower performance, big capacity
- Expensive data movements between tiers (e.g. tape library access latency)

Goal:

- Use the top tier for files used regularly
- Get unused files out of the top tier as soon as possible
- The sooner a file can be evicted, the more space can be used on the top tier
- Don't evict a file too soon

0.

Common solutions include:

- LRU¹ policy, *e.g.* evict files that have not been accessed for 1 month
- Pattern based: some files are known not to be accessed after a given amount of time, e.g.:
 - /home/user1/job1/**/*.log files will be written for 1 day and read for maximum 1 week.
 - /scratch/**/checkpoint-* files will be written once and never read again
 - Tedious and ad-hoc (tied to user habits)

¹Least Recently Used ²Time from creation to last read

0.

Common solutions include:

- LRU¹ policy, *e.g.* evict files that have not been accessed for 1 month
- Pattern based: some files are known not to be accessed after a given amount of time, e.g.:
 - /home/user1/job1/**/*.log files will be written for 1 day and read for maximum 1 week.
 - /scratch/**/checkpoint-* files will be written once and never read again
 - Tedious and ad-hoc (tied to user habits)

Alternative approach: infer file lifetimes² from previously seen files

- Random Forest Regressor: decision tree based regressor
- Convolutional Neural Networks (CNN): powerful model, known to be good at automatically learning patterns

¹Least Recently Used

²Time from creation to last read

0.

Common solutions include:

- LRU¹ policy, *e.g.* evict files that have not been accessed for 1 month
- Pattern based: some files are known not to be accessed after a given amount of time, e.g.:
 - /home/user1/job1/**/*.log files will be written for 1 day and read for maximum 1 week.
 - /scratch/**/checkpoint-* files will be written once and never read again
 - Tedious and ad-hoc (tied to user habits)

Alternative approach: infer file lifetimes² from previously seen files

- Random Forest Regressor: decision tree based regressor
- Convolutional Neural Networks (CNN): powerful model, known to be good at automatically learning patterns

Advantages of this approach:

- Estimating file lifetime allows to build policies that make finer decisions on which files should be evicted and when
- Data and user behaviours drive the policy without manual analysis

¹Least Recently Used

²Time from creation to last read

- 2 Building the Models
 - Problem
 - Dataset
 - Random Forest Regressor
 - Convolutional Neural Network

Building the Models

Results

Input: a path (e.g. /home/coyote/aerodyn/profiles/road_runner.npy) Output: the lifetime of this path (e.g. 20 seconds or 30 days)

DE LA RECHERCHE À UNIQUETRIE

Introduction

Building the Models

Results

Input: a path (e.g. /home/coyote/aerodyn/profiles/road_runner.npy)

Output: the lifetime of this path (e.g. 20 seconds or 30 days)

- Lifetime (in this presentation): duration from creation to last read
- The method is independent from the lifetime definition
- Only the training data gives meaning to the output
- For this problem, we want to avoid lifetime underestimations
 - Underestimation \Rightarrow early eviction \Rightarrow performance loss

Building the Models

Results 0000000

\approx 6,000,000 files with:

- absolute path
- creation time
- last access time
- last modification time

Extracted from the Robinhood $^{\!3}$ database storing metadata of a production Lustre filesystem

DE LA RECHERCHE À L'INDUSTRI

Imbalanced dataset issues

00

Building the Models

Results 0000000

Issue: if 50% of the lifetimes are 0, always predicting low lifetimes can give the illusion of a good average accuracy.

- Need to ensure good accuracy over the whole range of values
- Error measures will have to take this into account by detailing error profile for different lifetime orders of magnitude

Building the Models

Machine learning algorithm only work on constant size arrays of numbers:

- Paths do not respect this constraint
- Algorithm performance can depend on the vectorization method

Building the Models

Machine learning algorithm only work on constant size arrays of numbers:

- Paths do not respect this constraint
- Algorithm performance can depend on the vectorization method

Chosen vectorization method:

- Left pad or truncate to 256 characters
- Characters are one-hot encoded so that all characters are seen as equidistant

Building the Models

Machine learning algorithm only work on constant size arrays of numbers:

- Paths do not respect this constraint
- Algorithm performance can depend on the vectorization method

Chosen vectorization method:

- Left pad or truncate to 256 characters
- Characters are one-hot encoded so that all characters are seen as equidistant

Each input path is now a matrix of *path_len* × *alphabet_size* (here 256 × 106)

Building the Models

Results

Durations are scaled logarithmically (log₁₀(duration))

- Reflects the nature of the error that interests us
- We are interested in the order of magnitude of durations

Intuitively:

- +10³ seconds is negligible if the duration is 10⁹
- $+10^3$ seconds is huge if the duration is 10^1
- ×10 is perceived as the same error for 10⁹ and 10¹

DE LA RECHERDRE À UNIDUSTRI

Introduction

Building the Models

Results

Random Forest:

- Several sklearn regressors tested, Random Forest gave the best results
- Good computational cost / precision ratio
- 16 estimators (decision trees) gives good results
- Increasing this number does not improve performance significantly

CNN: Architecture

Introductio 00 Building the Models

Results 0000000

Convolutional Neural Networks:

- Good at learning patterns
- Paths can be seen as sequences of patterns of characters
- Based on known architectures and fine tuned with experimentation:
 - Classic image recognition networks (namely the VGG family)
 - Other character level convolution networks (eXpose)

(Embedding	dim 106 to	dim 32
(Conv 1D	ReLU, size=5,	N=128
(Average Po	oling	size=2
(Conv 1D	ReLU, size=3,	N=256
(Average Po	oling	size=2
x3(Dense	1	V=4096
(Dense		N=1

Figure 1: CNN Architecture

Results

Loss: function optimized by the network, defines how the network weights are updated

Selected losses4:

- logcosh: loss(err) = log(cosh(err))
 - Behaves like mean squared error for small errors
 - But more resilient to outliers
- quantile 99: $loss(err) = max(0.99 \times err, -0.01 \times err)$
 - Underestimations are way more penalized than overestimations
 - Results in a lower accuracy
 - But very low underestimation rate (theoretically around 1%)

2 Building the Models

DE LA RECHERCHE À L'INDUSTRI

Results: Disclaimer

Two training situations will be demonstrated:

- 70% training set, 30% validation set
- 95% training set, 5% validation set

Training times:

- Random Forest: sklearn, ≈ 5 minutes training on 24 CPU
- \blacksquare CNN: <code>tensorflow</code>, \approx 2h to 3h training on 4 NVidia Tesla V100-SXM2-16GB (100 epochs)

BE LA RECHERCHE À UNIQUETRI

Results: Disclaimer

Two training situations will be demonstrated:

- 70% training set, 30% validation set
- 95% training set, 5% validation set

Training times:

- Random Forest: sklearn, ≈ 5 minutes training on 24 CPU
- \blacksquare CNN: <code>tensorflow</code>, \approx 2h to 3h training on 4 NVidia Tesla V100-SXM2-16GB (100 epochs)

$$err = \frac{truth}{prediction}$$

Building the Models

Results 0000000

Result summary on the "creation to last read" dataset, 70%-30% split:

- 96.47% of estimation are less than a ×10 factor away from the truth
- **86.81%** of estimation are less than a $\times 10^{0.1}$ factor away from the truth
- 10.55% underestimations (1.78% underestimations > ×10)

Introductic

Building the Models

Results 0000000

Result summary on the "creation to last read" dataset, 95%-5% split:

- **96.47%** 96.75% of estimation are less than a \times 10 factor away from the truth
- **86.81%** 87.21% of estimation are less than a $\times 10^{0.1}$ factor away from the truth
- **10.55%** 9.54% underestimations (1.78% 1.50% underestimations > \times 10)

CNN Results (70%-30%)

Introductio

Building the Models

Results 0000000

Result summary on the "creation to last read" dataset, 70%-30% split:

- logcosh:
 - 98.79% of estimation are less than a \times 10 factor away from the truth
 - 91.57% of estimation are less than a ×10^{0.1} factor away from the truth
 - 36.62% underestimations (0.63% underestimations > ×10)

quantile 99:

- 94.59% of estimation are less than a ×10 factor away from the truth
- 66.47% of estimation are less than a $\times 10^{0.1}$ factor away from the truth
- 0.68% underestimations (0.12% underestimations > ×10)

CNN Results (95-5%)

Introduction

Building the Models

Result summary on the "creation to last read" dataset, 95%-5% split:

- logcosh:
 - **98.79%** 99.03% of estimation are less than a \times 10 factor away from the truth
 - 91.57% 93.26% of estimation are less than a ×10^{0.1} factor away from the truth
 - 36.62% 24.83% underestimations (0.63% 0.50% underestimations > ×10)

quantile 99:

- 94.59% 94.69% of estimation are less than a ×10 factor away from the truth
- 66.47% 70.42% of estimation are less than a ×10^{0.1} factor away from the truth
- 0.68% 0.94% underestimations (0.12% 0.09% underestimations > ×10)

DE LA RECHERCHE À L'HIDUSTRIS

Introduction

المعامية ما	المعيد والمعرار ا	4.10		
the Models			Results 00000€C	

70% - 30% split	Accuracy ⁵	Underest.	Underest. $< \times 10$
Random Forests	96.47%	10.55%	1.78%
CNN (logcosh)	98.79%	36.62%	0.63%
CNN (quantile99)	94.59%	0.68%	0.12%
95% - 5% split	Accuracy	Underest.	Underest. < ×10
Random Forests	96.79%	9.64%	1.50%
CNN (logcosh)	99.03%	24.83%	0.50%
CNN (quantile99)	94.69%	0.94%	0.09%

Building

Conclusion:

- Accuracy and underestimation rate seem high enough for practical applications
- Investigated prediction errors mostly are outliers and ambiguous cases
- CNN with *logcosh* is the most accurate
- CNN with quantile99 may be the most useful in practice
- In practice, a quorum of the multiple algorithms could be used

⁵Percentage of predictions within a factor $\times 10$ from the truth

CEA/DAM

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Bruyères-le-Châtel | 91297 Arpajon Cedex T, +33 (0) 169 26 40 00 | F, +33 (0) 169 26 40 00 Établissement public à caractère industriel et commercial RCS Paris B 775 685 019