
Predicting File Lifetimes With
Machine Learning

Florent Monjalet Thomas Leibovici

CEA/DAM

September 24, 2019

CEA/DAM | September 24, 2019 | PAGE 1/21

1 Introduction

2 Building the Models

3 Results

Introduction CEA/DAM | September 24, 2019 | PAGE 2/21

Motivations

Introduction Building the Models Results

Hierarchical data storage:

Top tiers (e.g. NVMe): high performance (latency, throughput), small capacity
Bottom tiers (e.g. tape library): lower performance, big capacity
Expensive data movements between tiers (e.g. tape library access latency)

Goal:

Use the top tier for files used regularly
Get unused files out of the top tier as soon as possible
The sooner a file can be evicted, the more space can be used on the top tier
Don’t evict a file too soon

CEA/DAM | September 24, 2019 | PAGE 3/21

Motivations

Introduction Building the Models Results

Common solutions include:

LRU1 policy, e.g. evict files that have not been accessed for 1 month
Pattern based: some files are known not to be accessed after a given amount of
time, e.g.:

/home/user1/job1/**/*.log files will be written for 1 day and read for maximum 1
week.
/scratch/**/checkpoint-* files will be written once and never read again
Tedious and ad-hoc (tied to user habits)

Alternative approach: infer file lifetimes2 from previously seen files

Random Forest Regressor: decision tree based regressor
Convolutional Neural Networks (CNN): powerful model, known to be good at
automatically learning patterns

Advantages of this approach:

Estimating file lifetime allows to build policies that make finer decisions on which
files should be evicted and when
Data and user behaviours drive the policy without manual analysis

1Least Recently Used
2Time from creation to last read CEA/DAM | September 24, 2019 | PAGE 4/21

Motivations

Introduction Building the Models Results

Common solutions include:

LRU1 policy, e.g. evict files that have not been accessed for 1 month
Pattern based: some files are known not to be accessed after a given amount of
time, e.g.:

/home/user1/job1/**/*.log files will be written for 1 day and read for maximum 1
week.
/scratch/**/checkpoint-* files will be written once and never read again
Tedious and ad-hoc (tied to user habits)

Alternative approach: infer file lifetimes2 from previously seen files

Random Forest Regressor: decision tree based regressor
Convolutional Neural Networks (CNN): powerful model, known to be good at
automatically learning patterns

Advantages of this approach:

Estimating file lifetime allows to build policies that make finer decisions on which
files should be evicted and when
Data and user behaviours drive the policy without manual analysis

1Least Recently Used
2Time from creation to last read CEA/DAM | September 24, 2019 | PAGE 4/21

Motivations

Introduction Building the Models Results

Common solutions include:

LRU1 policy, e.g. evict files that have not been accessed for 1 month
Pattern based: some files are known not to be accessed after a given amount of
time, e.g.:

/home/user1/job1/**/*.log files will be written for 1 day and read for maximum 1
week.
/scratch/**/checkpoint-* files will be written once and never read again
Tedious and ad-hoc (tied to user habits)

Alternative approach: infer file lifetimes2 from previously seen files

Random Forest Regressor: decision tree based regressor
Convolutional Neural Networks (CNN): powerful model, known to be good at
automatically learning patterns

Advantages of this approach:

Estimating file lifetime allows to build policies that make finer decisions on which
files should be evicted and when
Data and user behaviours drive the policy without manual analysis

1Least Recently Used
2Time from creation to last read CEA/DAM | September 24, 2019 | PAGE 4/21

1 Introduction

2 Building the Models
Problem
Dataset
Random Forest Regressor
Convolutional Neural Network

3 Results

Building the Models CEA/DAM | September 24, 2019 | PAGE 5/21

Problem Specification

Introduction Building the Models Results

Input: a path (e.g. /home/coyote/aerodyn/profiles/road_runner.npy)

Output: the lifetime of this path (e.g. 20 seconds or 30 days)

Lifetime (in this presentation): duration from creation to last read
The method is independant from the lifetime definition
Only the training data gives meaning to the output
For this problem, we want to avoid lifetime underestimations

Underestimation⇒ early eviction⇒ performance loss

Problem CEA/DAM | September 24, 2019 | PAGE 6/21

Problem Specification

Introduction Building the Models Results

Input: a path (e.g. /home/coyote/aerodyn/profiles/road_runner.npy)

Output: the lifetime of this path (e.g. 20 seconds or 30 days)

Lifetime (in this presentation): duration from creation to last read
The method is independant from the lifetime definition
Only the training data gives meaning to the output
For this problem, we want to avoid lifetime underestimations

Underestimation⇒ early eviction⇒ performance loss

Problem CEA/DAM | September 24, 2019 | PAGE 6/21

Dataset

Introduction Building the Models Results

≈ 6,000,000 files with:

absolute path
creation time
last access time
last modification time

Extracted from the Robinhood3 database storing metadata of a production Lustre
filesystem

3https://github.com/cea-hpc/robinhoodDataset CEA/DAM | September 24, 2019 | PAGE 7/21

Imbalanced dataset issues

Introduction Building the Models Results

0 2 4 6 8
Duration (in powers of 10)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Creation to last read

45.80% < 10 seconds

Issue: if 50% of the lifetimes are 0, always predicting low lifetimes can give the illusion
of a good average accuracy.

Need to ensure good accuracy over the whole range of values
Error measures will have to take this into account by detailing error profile for
different lifetime orders of magnitude

Dataset CEA/DAM | September 24, 2019 | PAGE 8/21

Dataset preprocessing: paths

Introduction Building the Models Results

Machine learning algorithm only work on constant size arrays of numbers:

Paths do not respect this constraint
Algorithm performance can depend on the vectorization method

Chosen vectorization method:

Left pad or truncate to 256 characters
Characters are one-hot encoded so that all characters are seen as equidistant

/bac/bc

\0 \0 / b a c / b c eof

Padding

1 1 0 0 0 0 0 0 0 0\0

0 0 0 0 0 0 0 0 0 1eof

0 0 1 0 0 0 1 0 0 0/

0 0 0 0 1 0 0 0 0 0a

0 0 0 1 0 0 0 1 0 0b

0 0 0 0 0 1 0 0 1 0c

Each input path is now a matrix of path_len × alphabet_size (here 256 × 106)

Dataset CEA/DAM | September 24, 2019 | PAGE 9/21

Dataset preprocessing: paths

Introduction Building the Models Results

Machine learning algorithm only work on constant size arrays of numbers:

Paths do not respect this constraint
Algorithm performance can depend on the vectorization method

Chosen vectorization method:

Left pad or truncate to 256 characters
Characters are one-hot encoded so that all characters are seen as equidistant

/bac/bc

\0 \0 / b a c / b c eof

Padding

1 1 0 0 0 0 0 0 0 0\0

0 0 0 0 0 0 0 0 0 1eof

0 0 1 0 0 0 1 0 0 0/

0 0 0 0 1 0 0 0 0 0a

0 0 0 1 0 0 0 1 0 0b

0 0 0 0 0 1 0 0 1 0c

Each input path is now a matrix of path_len × alphabet_size (here 256 × 106)

Dataset CEA/DAM | September 24, 2019 | PAGE 9/21

Dataset preprocessing: paths

Introduction Building the Models Results

Machine learning algorithm only work on constant size arrays of numbers:

Paths do not respect this constraint
Algorithm performance can depend on the vectorization method

Chosen vectorization method:

Left pad or truncate to 256 characters
Characters are one-hot encoded so that all characters are seen as equidistant

/bac/bc

\0 \0 / b a c / b c eof

Padding

1 1 0 0 0 0 0 0 0 0\0

0 0 0 0 0 0 0 0 0 1eof

0 0 1 0 0 0 1 0 0 0/

0 0 0 0 1 0 0 0 0 0a

0 0 0 1 0 0 0 1 0 0b

0 0 0 0 0 1 0 0 1 0c

Each input path is now a matrix of path_len × alphabet_size (here 256 × 106)
Dataset CEA/DAM | September 24, 2019 | PAGE 9/21

Dataset preprocessing: durations

Introduction Building the Models Results

Durations are scaled logarithmically (log10(duration))

Reflects the nature of the error that interests us
We are interested in the order of magnitude of durations

Intuitively:

+103 seconds is negligible if the duration is 109

+103 seconds is huge if the duration is 101

×10 is perceived as the same error for 109 and 101

Dataset CEA/DAM | September 24, 2019 | PAGE 10/21

Random Forest Regressor

Introduction Building the Models Results

Random Forest:

Several sklearn regressors tested, Random Forest gave the best results
Good computational cost / precision ratio
16 estimators (decision trees) gives good results
Increasing this number does not improve performance significantly

Random Forest Regressor CEA/DAM | September 24, 2019 | PAGE 11/21

CNN: Architecture

Introduction Building the Models Results

Convolutional Neural Networks:

Good at learning patterns
Paths can be seen as sequences of patterns of characters
Based on known architectures and fine tuned with experimentation:

Classic image recognition networks (namely the VGG family)
Other character level convolution networks (eXpose)

Embedding

Conv 1D

dim 106 to dim 32

ReLU, size=5, N=128

Average Pooling size=2

Conv 1D ReLU, size=3, N=256

Average Pooling size=2

Dense N=4096

Dense N=1

x3

Figure 1: CNN Architecture

Convolutional Neural Network CEA/DAM | September 24, 2019 | PAGE 12/21

CNN: Loss

Introduction Building the Models Results

Loss: function optimized by the network, defines how the network weights are updated

Selected losses4:

logcosh: loss(err) = log(cosh(err))
Behaves like mean squared error for small errors
But more resilient to outliers

quantile 99: loss(err) = max(0.99 × err , −0.01 × err)
Underestimations are way more penalized than overestimations
Results in a lower accuracy
But very low underestimation rate (theoretically around 1%)

4With err = truth − prediction since the network works on log10(duration)Convolutional Neural Network CEA/DAM | September 24, 2019 | PAGE 13/21

1 Introduction

2 Building the Models

3 Results

Results CEA/DAM | September 24, 2019 | PAGE 14/21

Results: Disclaimer

Introduction Building the Models Results

0 2 4 6 8
Duration (in powers of 10)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Creation to last read

Two training situations will be demonstrated:

70% training set, 30% validation set
95% training set, 5% validation set

Training times:

Random Forest: sklearn, ≈ 5 minutes training on 24 CPU
CNN: tensorflow, ≈ 2h to 3h training on 4 NVidia Tesla V100-SXM2-16GB (100
epochs)

err = truth
prediction

CEA/DAM | September 24, 2019 | PAGE 15/21

Results: Disclaimer

Introduction Building the Models Results

0 2 4 6 8
Duration (in powers of 10)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Creation to last read

Two training situations will be demonstrated:

70% training set, 30% validation set
95% training set, 5% validation set

Training times:

Random Forest: sklearn, ≈ 5 minutes training on 24 CPU
CNN: tensorflow, ≈ 2h to 3h training on 4 NVidia Tesla V100-SXM2-16GB (100
epochs)

err = truth
prediction

CEA/DAM | September 24, 2019 | PAGE 15/21

Random Forest Regressor Results (70%-30%)

Introduction Building the Models Results

Result summary on the “creation to last read” dataset, 70%-30% split:

96.47% of estimation are less than a ×10 factor away from the truth
86.81% of estimation are less than a ×100.1 factor away from the truth
10.55% underestimations (1.78% underestimations > ×10)

101 102 103 104 105 106 107 108

True lifetime (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pr
op

or
tio

n
un

de
r e

rro
r (

hi
gh

er
 is

 b
et

te
r)

Random Forest, 16 estimators (Creation to last read)

err < ×101.0 (random_forest)
% of underestimations (random_forest)

8 6 4 2 0 2 4 6 8
truth

prediction (in powers of 10)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

Random Forest, 16 estimators (Creation to last read)
err_random_forest

CEA/DAM | September 24, 2019 | PAGE 16/21

Random Forest Regressor Results (95%-5%)

Introduction Building the Models Results

Result summary on the “creation to last read” dataset, 95%-5% split:

96.47% 96.75% of estimation are less than a ×10 factor away from the truth
86.81% 87.21% of estimation are less than a ×100.1 factor away from the truth
10.55% 9.54% underestimations (1.78% 1.50% underestimations > ×10)

101 102 103 104 105 106 107 108

True lifetime (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pr
op

or
tio

n
un

de
r e

rro
r (

hi
gh

er
 is

 b
et

te
r)

Random Forest, 16 estimators (Creation to last read)

err < ×101.0 (random_forest)
% of underestimations (random_forest)

8 6 4 2 0 2 4 6 8
truth

prediction (in powers of 10)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

Random Forest, 16 estimators (Creation to last read)
err_random_forest

CEA/DAM | September 24, 2019 | PAGE 17/21

CNN Results (70%-30%)

Introduction Building the Models Results

Result summary on the “creation to last read” dataset, 70%-30% split:

logcosh:
98.79% of estimation are less than a ×10 factor away from the truth
91.57% of estimation are less than a ×100.1 factor away from the truth
36.62% underestimations (0.63% underestimations > ×10)

quantile 99:
94.59% of estimation are less than a ×10 factor away from the truth
66.47% of estimation are less than a ×100.1 factor away from the truth
0.68% underestimations (0.12% underestimations > ×10)

101 102 103 104 105 106 107 108

True lifetime (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pr
op

or
tio

n
un

de
r e

rro
r (

hi
gh

er
 is

 b
et

te
r)

CNN Accuracy

err < ×101.0 (quantile99)
% of underestimations (quantile99)
err < ×101.0 (logcosh)
% of underestimations (logcosh)

8 6 4 2 0 2 4 6 8
truth

prediction (in powers of 10)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

CNN Error Repartition (zoomed)
err_quantile99
err_logcosh

CEA/DAM | September 24, 2019 | PAGE 18/21

CNN Results (95-5%)

Introduction Building the Models Results

Result summary on the “creation to last read” dataset, 95%-5% split:

logcosh:
98.79% 99.03% of estimation are less than a ×10 factor away from the truth
91.57% 93.26% of estimation are less than a ×100.1 factor away from the truth
36.62% 24.83% underestimations (0.63% 0.50% underestimations > ×10)

quantile 99:
94.59% 94.69% of estimation are less than a ×10 factor away from the truth
66.47% 70.42% of estimation are less than a ×100.1 factor away from the truth
0.68% 0.94% underestimations (0.12% 0.09% underestimations > ×10)

101 102 103 104 105 106 107 108

True lifetime (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pr
op

or
tio

n
un

de
r e

rro
r (

hi
gh

er
 is

 b
et

te
r)

CNN Accuracy

err < ×101.0 (quantile99)
% of underestimations (quantile99)
err < ×101.0 (logcosh)
% of underestimations (logcosh)

8 6 4 2 0 2 4 6 8
truth

prediction (in powers of 10)

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

CNN Error Repartition (zoomed)
err_quantile99
err_logcosh

CEA/DAM | September 24, 2019 | PAGE 19/21

Summary

Introduction Building the Models Results

70% - 30% split Accuracy5 Underest. Underest. < ×10

Random Forests 96.47% 10.55% 1.78%
CNN (logcosh) 98.79% 36.62% 0.63%
CNN (quantile99) 94.59% 0.68% 0.12%

95% - 5% split Accuracy Underest. Underest. < ×10

Random Forests 96.79% 9.64% 1.50%
CNN (logcosh) 99.03% 24.83% 0.50%
CNN (quantile99) 94.69% 0.94% 0.09%

Conclusion:

Accuracy and underestimation rate seem high enough for practical applications
Investigated prediction errors mostly are outliers and ambiguous cases
CNN with logcosh is the most accurate
CNN with quantile99 may be the most useful in practice
In practice, a quorum of the multiple algorithms could be used

5Percentage of predictions within a factor ×10 from the truth CEA/DAM | September 24, 2019 | PAGE 20/21

Commissariat à l’énergie atomique et aux énergies alternatives
Centre de Bruyères-le-Châtel | 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00 | F. +33 (0)1 69 26 40 00
Établissement public à caractère industriel et commercial
RCS Paris B 775 685 019

CEA/DAM

	Introduction
	Building the Models
	Problem
	Dataset
	Random Forest Regressor
	Convolutional Neural Network

	Results

