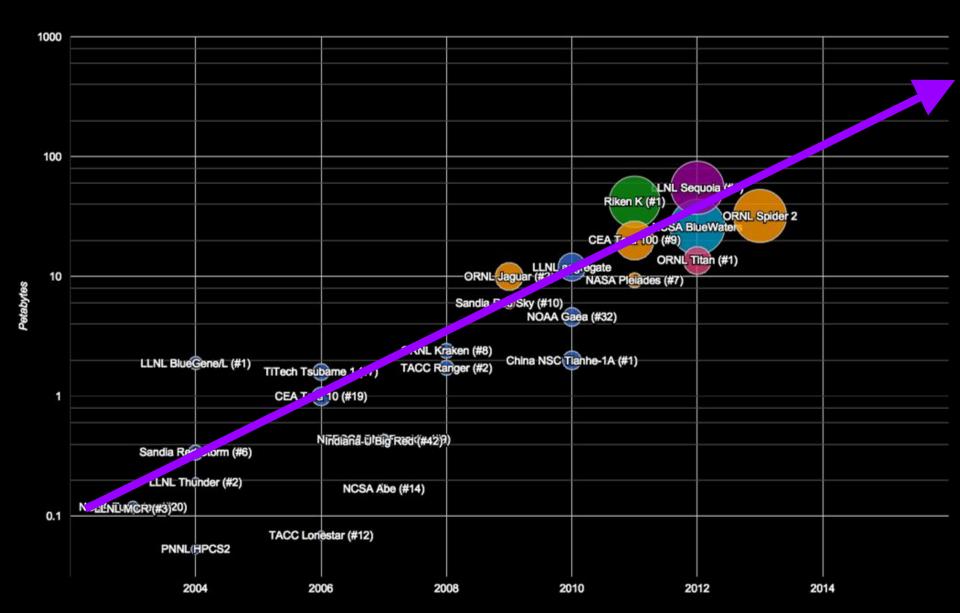


LAD 2014 nathan.rutman@seagate.com

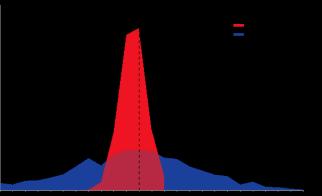

Agenda

- What's with your title?
- Lustre scale today
- Exascale differences
- Recovery
- Availability
- Network
- Hardware factors
- Layering
- Visibility
- Code Quality

What's with your title?

- Lustre is the biggest, baddest FS there is!
- 7+ of the top 10, tens of PB, TB per second
- Yes. But is it easy?
- Exascale is 100x bigger
- I'm going to shine a light on the problems
- There are ideas for some of the solutions
- but not all

Lustre systems growth

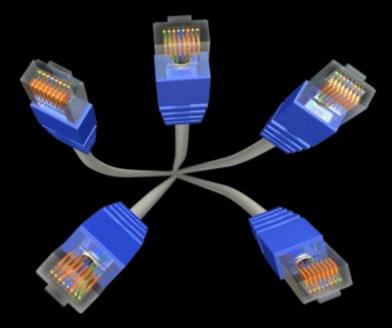


Exascale differences

- Hardware scaling
 - Component Failures
 - Timeouts
 - Network losses
 - Hardware diversity
- Software scaling
 - Corner cases
 - Stack growth
- Complexity
 - Component count
 - Layer count
 - Cascading events
 - What's going on?!?

Recovery

- Timeouts must increase with scale
 - must cover the worst case!
 - adaptive timeouts help to find the limits, but don't change them
 - temporary outages "beer timeouts"
- Recovery actions tied to timeouts
 - imperative recovery helps during failover
 - expected wait times for resend, lock callback, etc grow
- More components = more failures
 - drive failure
 - server failure
 - network packet loss
- More failures + longer recovery = not good



Availability

- At scale, there will always be an OST down
- Well, we've only lost access to some of our files...
- Fewer, bigger OSTs ZFS?
 - Larger chance of OST rebuild
 - This is vertical, not horizontal scaling
- Fancier layouts RAID1 too expensive, need RAID6
- Need to handle more than a few 1000 OSTs

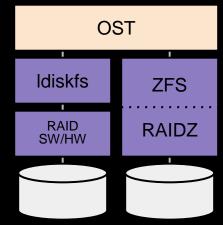
Network

- LNET message queues are FIFO
 - actionable reqs stuck behind waiting ones
- Need channels with independent credits
- Need to figure out prioritization
- Unbelievably, still 1:1 client-server pinging
- Lustre is not robust in the face of dropped packets

Hardware Diversity

• Storage != Spinning discs

- media hierarchy from RAM, NVRAM, disc, tape
- No in-Lustre hierarchy
 - need more descriptive layouts
 - extent-based current & goal
 - should handle more media types
 - automatic migration
- Client-server model
 - Can't use storage on compute nodes
 - All resources managed by server locks, grant, quota
 - No proxies no localized caches
 - Converged client Lustre 2.0


Server Hardware

- Cores and threads
 - what's the right number?
 - big servers have thousands of threads but most are just waiting
 - when requests > threads, they wait even though progress is possible
 - HPQ code is imperfect
 - timed-out client can't reconnect to release lock (LU-1239)
 - all-threads-busy scenarios are not well tested
- Sleeping hurts
 - cache line flush
 - paging
- Replace thread-per-req with cpu-localized state machines

Software Stack

• Parallel file system built on local filesystem

- Allocator, elevator, request ordering, Idiskfs
- RAID reordering
- Interface limits efficiency: caching, readahead
- Direct OSD devices?

- No hierarchy in Lust
- Add hierarchy outsic
 - PLFS, Burst Buffer,
 - Integration effort
 - Recovery / transaction
 - Who to blame?

'191985.455969:0:19286:0:(client.c:1489:ptlrpc_check_set()) Process entered :0:19286:0:(lib-msg.c:48:lnet build unlink event()) Process entered 455975:0:19286:0:(events.c:98:reply in callback()) @ @ @ type 6, status 0 reg@ffff880835b04c00 x1475091387459632/t0 29@o2ib4010:28/4 lens 328/400 e 6 to 0 dl 1407192183 ref 1 fl Rpc: 010,000 Everybody 50 0ves syslog debugging unlink req@ffff880835b04c00 x1475091387459632/t0(0) 0101 Especially correlating across multiple nodes 0000001:6.0 Just collecting logs is a pain callback()) Process leaving Kernel dumps and system panics are fun!-Neither humanzenor hor machine-readable Turn up debug level -- after you see the problem Need full-time, machine-readable, centrally collected debug 2 data 10:28/4 lens 328/400 00000100:00000001:6.0:1407191985.455987:0:19286:0:(client.c:1194:after_reply()) Process entered 02000000:0000001:6.0:1407191985.455988:0:19286:0:(sec.c:992:do cli unwrap reply()) Process entered 00000100:00000400:6.0:1407191985.455993:0:19286:0:(client.c:303:ptlrpc_at_adj_net_latency()) Reported service time 192 > total measured time 103

HA

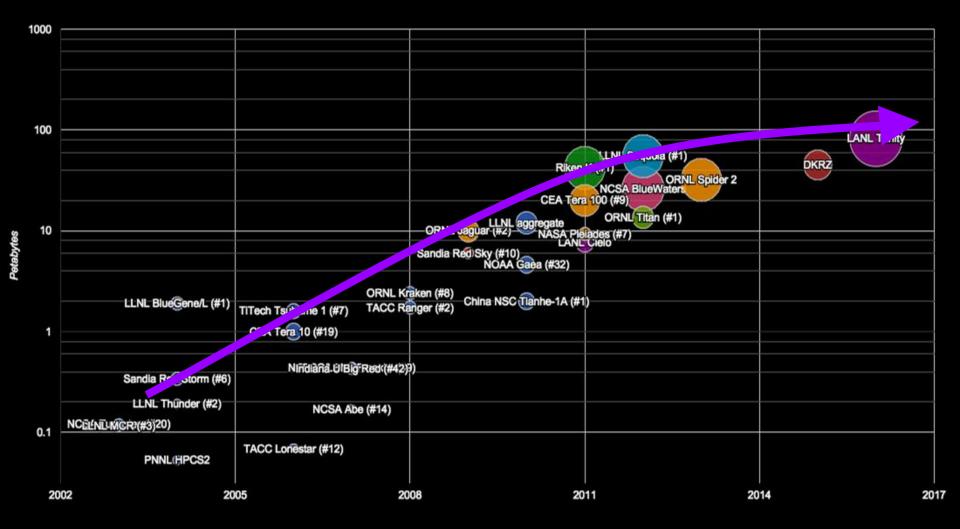
- HA is a separate system
- Only a gross interaction of "failover" or not
- Network partition = evict all clients
- Need state knowledge before sending req/timeout
- Should incorporate external knowledge of cluster state
 - Clients
 - Network
- Node death on Lustre SW failure makes recovery actions more difficult
- Dual-ported drives risk user/admin/HA corruption

Lustre Code

- Lustre designed in 1999, for Petascale
- Lots of revision over time
- Explosion in complexity
- Changes often have unforeseen consequences
- Nobody has a full view anymore
- Poorly documented
- Cruft on cruft

Wednesday, 02 June, 1999 19:50:53

What are you doing about it?


- The problems are substantial
- We are working mainly to stabilize Lustre for current scale customers
 - RPC queues
 - flock scaling
 - hardening Recovery
 - lost packets
- But this in a sense is only fixing symptoms of the foundational problems
- Have we reached the saturation point with Lustre scale?

Thanks!

nathan.rutman@seagate.com

Lustre systems growth

