

Exascale: A Long Look at Lustre Limitations

LAD 2014

nathan.rutman@seagate.com

● What’s with your title?

● Lustre scale today

● Exascale differences

● Recovery

● Availability

● Network

● Hardware factors

● Layering

● Visibility

● Code Quality

Agenda

What’s with your title?

● Lustre is the biggest, baddest FS there is!

● 7+ of the top 10, tens of PB, TB per second

● Yes. But is it easy?

● Exascale is 100x bigger

● I’m going to shine a light on the problems

● There are ideas for some of the solutions

- but not all

Lustre systems growth

Exascale differences

● Hardware scaling
○ Component Failures

○ Timeouts

○ Network losses

○ Hardware diversity

● Software scaling
○ Corner cases

○ Stack growth

● Complexity
○ Component count

○ Layer count

○ Cascading events

○ What’s going on?!?

Recovery

● Timeouts must increase with scale
○ must cover the worst case!

○ adaptive timeouts help to find the limits, but don’t change them

○ temporary outages - “beer timeouts”

● Recovery actions tied to timeouts
○ imperative recovery helps during failover

○ expected wait times for resend, lock callback, etc grow

● More components = more failures
○ drive failure

○ server failure

○ network packet loss

● More failures + longer recovery = not good

Availability

● At scale, there will always be an OST down

● Well, we’ve only lost access to some of our files…

● Fewer, bigger OSTs - ZFS?
○ Larger chance of OST rebuild

○ This is vertical, not horizontal scaling

● Fancier layouts - RAID1 too expensive, need RAID6

● Need to handle more than a few 1000 OSTs

Network

● LNET message queues are FIFO
○ actionable reqs stuck behind waiting ones

● Need channels with independent credits

● Need to figure out prioritization

● Unbelievably, still 1:1 client-server pinging

● Lustre is not robust in the face of dropped packets

Hardware Diversity

● Storage != Spinning discs
○ media hierarchy from RAM, NVRAM, disc, tape

● No in-Lustre hierarchy
○ need more descriptive layouts

■ extent-based current & goal

○ should handle more media types

○ automatic migration

● Client-server model
○ Can’t use storage on compute nodes

○ All resources managed by server - locks, grant, quota

○ No proxies - no localized caches

○ Converged client - Lustre 2.0

Server Hardware

● Cores and threads
○ what’s the right number?
○ big servers have thousands of threads - but most are just

waiting
○ when requests > threads, they wait even though progress is

possible
■ HPQ code is imperfect
■ timed-out client can't reconnect to release lock (LU-1239)
■ all-threads-busy scenarios are not well tested

● Sleeping hurts
○ cache line flush
○ paging

● Replace thread-per-req with cpu-localized state
machines

Software Stack

● Parallel file system built on local filesystem
○ Allocator, elevator, request ordering, ldiskfs
○ RAID reordering
○ Interface limits efficiency: caching, readahead
○ Direct OSD devices?

● No hierarchy in Lustre for data movement
● Add hierarchy outside of Lustre?

○ PLFS, Burst Buffer, IO forwarders
○ Integration effort
○ Recovery / transactionality through layers?
○ Who to blame?

ldiskfs

RAID
SW/HW

ZFS

RAIDZ

OST

00000100:00000001:6.0:1407191985.455969:0:19286:0:(client.c:1489:ptlrpc_check_set()) Process entered

00000400:00000001:6.0:1407191985.455971:0:19286:0:(lib-msg.c:48:lnet_build_unlink_event()) Process entered

00000400:00000001:6.0:1407191985.455972:0:19286:0:(lib-msg.c:57:lnet_build_unlink_event()) Process leaving

00000100:00000001:6.0:1407191985.455973:0:19286:0:(events.c:96:reply_in_callback()) Process entered

00000100:00000200:6.0:1407191985.455975:0:19286:0:(events.c:98:reply_in_callback()) @@@ type 6, status 0 req@ffff880835b04c00 x1475091387459632/t0(0) o101->snx11063-OST0063-osc-

ffff880839f80000@10.149.150.29@o2ib4010:28/4 lens 328/400 e 6 to 0 dl 1407192183 ref 1 fl Rpc:

RU/2/ffffffff rc -11/-1

00000100:00000200:6.0:1407191985.455981:0:19286:0:(events.c:119:reply_in_callback()) @@@ unlink req@ffff880835b04c00 x1475091387459632/t0(0) o101->snx11063-OST0063-osc-

ffff880839f80000@10.149.150.29@o2ib4010:28/4 lens 328/400 e 6 to 0 dl 1407192183 ref 1 fl Rpc:R/2/fffff

fff rc -11/-1

00000100:00000001:6.0:1407191985.455984:0:19286:0:(events.c:174:reply_in_callback()) Process leaving

00000400:00000200:6.0:1407191985.455985:0:19286:0:(lib-md.c:73:lnet_md_unlink()) Unlinking md ffff88075e926640

00000100:00000001:6.0:1407191985.455986:0:19286:0:(client.c:2353:ptlrpc_unregister_reply()) Process leaving (rc=1 : 1 : 1)

00000100:00000001:6.0:1407191985.455987:0:19286:0:(client.c:1194:after_reply()) Process entered

00000100:00000001:6.0:1407191985.455973:0:19286:0:(events.c:96:reply_in_callback()) Process entered

00000100:00000200:6.0:1407191985.455975:0:19286:0:(events.c:98:reply_in_callback()) @@@ type 6, status 0 req@ffff880835b04c00 x1475091387459632/t0(0) o101->snx11063-OST0063-osc-

ffff880839f80000@10.149.150.29@o2ib4010:28/4 lens 328/400 e 6 to 0 dl 1407192183 ref 1 fl Rpc:

RU/2/ffffffff rc -11/-1

00000100:00000200:6.0:1407191985.455981:0:19286:0:(events.c:119:reply_in_callback()) @@@ unlink req@ffff880835b04c00 x1475091387459632/t0(0) o101->snx11063-OST0063-osc-

ffff880839f80000@10.149.150.29@o2ib4010:28/4 lens 328/400 e 6 to 0 dl 1407192183 ref 1 fl Rpc:R/2/ffffffff rc -11/-1

00000100:00000001:6.0:1407191985.455984:0:19286:0:(events.c:174:reply_in_callback()) Process leaving

00000400:00000200:6.0:1407191985.455985:0:19286:0:(lib-md.c:73:lnet_md_unlink()) Unlinking md ffff88075e926640

00000100:00000001:6.0:1407191985.455986:0:19286:0:(client.c:2353:ptlrpc_unregister_reply()) Process leaving (rc=1 : 1 : 1)

00000100:00000001:6.0:1407191985.455987:0:19286:0:(client.c:1194:after_reply()) Process entered

02000000:00000001:6.0:1407191985.455988:0:19286:0:(sec.c:992:do_cli_unwrap_reply()) Process entered

02000000:00000001:6.0:1407191985.455988:0:19286:0:(sec.c:992:do_cli_unwrap_reply()) Process entered

00000100:00000001:6.0:1407191985.455989:0:19286:0:(pack_generic.c:580:__lustre_unpack_msg()) Process entered

00000100:00000001:6.0:1407191985.455990:0:19286:0:(pack_generic.c:599:__lustre_unpack_msg()) Process leaving (rc=0 : 0 : 0)

02000000:00000001:6.0:1407191985.455991:0:19286:0:(sec.c:1046:do_cli_unwrap_reply()) Process leaving (rc=0 : 0 : 0)

00000100:00000400:6.0:1407191985.455993:0:19286:0:(client.c:303:ptlrpc_at_adj_net_latency()) Reported service time 192 > total measured time 103

00000100:00000001:6.0:1407191985.475626:0:19286:0:(client.c:1131:ptlrpc_check_status()) Process entered

00000100:00000001:6.0:1407191985.475627:0:19286:0:(client.c:1154:ptlrpc_check_status()) Process leaving (rc=18446744073709551605 : -11 : fffffffffffffff5)

00000100:00000001:6.0:1407191985.475628:0:19286:0:(client.c:2410:ptlrpc_free_committed()) Process entered

00000100:00000001:6.0:1407191985.475629:0:19286:0:(client.c:2421:ptlrpc_free_committed()) Process leaving

00000100:00000001:6.0:1407191985.475629:0:19286:0:(client.c:1371:after_reply()) Process leaving (rc=18446744073709551605 : -11 : fffffffffffffff5)

00000100:00000001:6.0:1407191985.475630:0:19286:0:(client.c:1761:ptlrpc_check_set()) Process leaving via interpret (rc=18446744073709551605 : -11 : 0xfffffffffffffff5)

Visibility

● Everybody loves syslog debugging

● Especially correlating across multiple nodes
○ Just collecting logs is a pain

● Kernel dumps and system panics are fun!

● Neither human- nor machine-readable

● Turn up debug level -- after you see the problem

● Need full-time, machine-readable, centrally collected

debug data

HA

● HA is a separate system

● Only a gross interaction of “failover” or not

● Network partition = evict all clients

● Need state knowledge before sending req/timeout

● Should incorporate external knowledge of cluster state
○ Clients

○ Network

● Node death on Lustre SW failure makes recovery actions

more difficult

● Dual-ported drives risk user/admin/HA corruption

Lustre Code

● Lustre designed in 1999, for Petascale

● Lots of revision over time

● Explosion in complexity

● Changes often have unforeseen consequences

● Nobody has a full view anymore

● Poorly documented

● Cruft on cruft

http://youtube.com/v/ovAA7ZcjDZY

What are you doing about it?

● The problems are substantial

● We are working mainly to stabilize Lustre for current

scale customers
○ RPC queues

○ flock scaling

○ hardening Recovery

○ lost packets

● But this in a sense is only fixing symptoms of the

foundational problems

● Have we reached the saturation point with Lustre scale?

nathan.rutman@seagate.com

Thanks!

Lustre systems growth

