
Isolating failure domains
using OST pools

October 4-5 2017

Thomas Leibovici <thomas.leibovici@cea.fr>

5 octobre 2017

FROM RESEARCH TO INDUSTRY

LAD'17

LAD'17 | 4-5 OCTOBER 2017

Prepare for failures!

More components = more failures

Lustre's strength is its scalability
Allow aggregating throughput of many disks, servers, network links...

The more components, the higher the failure probability
MTBF of components is not infinite

High concurrency triggers software bugs more likely

=> Failure is the norm in a large systems

Modeling of reliability in HPC
(Stephen L. Scott, ORNL)

LAD'17 | 4-5 OCTOBER 2017

Commons ways to prevent failures

Common redundancy solutions

RAID protects against:
Block corruption

Disk failure

Dual controller/dual attachment protects against:
Disk array controller failure
Damaged link

HA protects against:
Server failure
Network adapter failure
Software failure (e.g. LBUG)

Big problems when larger failures occur
Loss of more disks than parity count
Whole disk array failure (e.g. double controller crash)
HA failure

LAD'17 | 4-5 OCTOBER 2017

Why striping make it worse

Default = stripes anywhere

Lustre default striping only relies on OST usage and load balancing

User's data is everywhere

If any OST becomes inaccessible, most datasets are impacted

Partial datasets are often unusable

Dataset 1

file file file file...

OST OST OST OST OST

Dataset 2

file file file file...

LAD'17 | 4-5 OCTOBER 2017

Why striping make it worse (2)

Default = stripe anywhere

Lustre default striping only relies on OST usage and load balancing

User's data is everywhere

If any OST becomes inaccessible, most datasets are impacted

Partial datasets are often unusable

Dataset 1

file file file file...

OST OST OST OST OST

Dataset 2

file file file file...

LAD'17 | 4-5 OCTOBER 2017

Grouping stripes into “failure domains”

Why grouping stripes?

Grouping datasets in failure domains reduce the number of impacted

datasets
In case of OST failure, most datasets remain available
E.g. 1 failure domain = 1 HA Cell

Dataset 1

file file file file...

OST OST OST OST OST

Dataset 2

file file file file...

OST

Failure domain 1 Failure domain 2 ...

LAD'17 | 4-5 OCTOBER 2017

Grouping stripes into “failure domains” (2)

Why grouping stripes?

Grouping datasets in failure domains reduce the number of impacted

datasets
In case of OST failure, most datasets remain available
E.g. 1 failure domain = 1 HA Cell

Dataset 1

file file file file...

OST OST OST OST OST

Dataset 2

file file file...

OST

Failure domain 1 Failure domain 2 ...

file

LAD'17 | 4-5 OCTOBER 2017

OST pools feature

How to group stripes?

OST pools allow creating logical groups of OSTs
lctl pool_new fs1 da3

lctl pool_add fs1.da3 fs1-OST[0-4f]

Pool can be assigned at file creation
lfs setstripe -p fs1.da3 /fs/home/foo/my_study/my_file

Pool can be assigned to directories
lfs setstripe -p fs1.da3 /fs/home/foo/my_study

Files inherit the pool of their parent directory

Sub-directories also inherit the pool of their parent directory

All “my_study” is located in the specified pool

LAD'17 | 4-5 OCTOBER 2017

Organizing data

Defining the right datasets

Per file: datasets of multiple files are unusable in case of OST failure

Per user: some users loose access to all their data in case of OST failure

Per group/community: even worse

Per study/per compute job:

On case of OST failure, some studies are unavaible
Unavaible datasets are “fairly” spread between users
Most studies remain fully available

Every user/group/project still has full datasets to work on

User 1 User 2 User 3
Study Study Study Study Study Study Study Study Study

LAD'17 | 4-5 OCTOBER 2017

Site integration

Assigning and turning pools
Solution 1

Explicit set stripe when a study/compute job starts

Round-robin pool or random pool
(avoid putting all user's eggs in one basket)

Solution 2

Based on a common organization of user's tree

e.g. <user_dir>/<sub-project>/<job_dir>
Periodically (e.g. hourly), a system script changes pool assignment of all
<user_dir>/<sub-project> directories (random or round-robin)
Newly created job directories inherit from this pool

=> All data of a job is co-located on a pool
=> User's jobs are spread across pools

LAD'17 | 4-5 OCTOBER 2017

Other interests

Bonus

In case of failure on some OSTs, production flow is
easy to control:

Stop assigning impacted pool(s) to user's
directories

Assign new job directories to sane pools

Not only useful for big failures:

It can also be used to reduce I/O load, to
speed up RAID rebuild

LAD'17 | 4-5 OCTOBER 2017

Drawbacks

Scaling the bandwidth per job
A job cannot use the full filesystem bandwidth

It is limited by the bandwidth of pool resources

OK for many small or medium compute jobs

All jobs aggregated can use the full filesystem bandwidth

Doesn't fit for huge computations that need the whole filesystem bandwidth

Possibility to define larger pools for large jobs

Small job

Pool = 1 I/O cell

Medium job

Pool = 2 I/O cells

Large job

Pool = 4 I/O cells

Reorganizing an existing
fileystem

LAD'17 | 4-5 OCTOBER 2017

Re-organizing existing data

Robinhood v3 custom policy to group files in pools

If you wish to group existing files in pools

Define a “no_pool” fileclass, that consists of files to be relocated:

Define a custom policy, e.g.:

Script “migrate2pool.sh” decides in which pool to locate the file and
execute (possibly remotely) a command like:
lfs migrate -p <pool> <file>
=> Access-proof (and raceless) since Lustre 2.8 (or with patch of LU-4840)

define_policy move2pool {
 status_manager = basic;
 scope { type == file }
 default_action = cmd("migrate2pool.sh '/fs/.lustre/fid/{fid}'");
}

fileclass no_pool {
 definition { type == file and ost_pool == "" }
}

LAD'17 | 4-5 OCTOBER 2017

Re-organizing existing data (policy rules)

Finally apply the policy to “no_pool”:

Or, a more complete example:

Running the policy
robinhood --run=move2pool --target=all

move2pool_rules {
 rule set_pool {
 target_fileclass = no_pool;
 condition { last_access > 1h }
 }
}

move2pool_rules {
 rule set_pool_small {
 target_fileclass = no_pool_small;

action = cmd(“migrate_local.sh -p poolK -c 1 {path}”);
 condition { last_access > 1h }
 }
 rule set_pool_medium {
 target_fileclass = no_pool_medium;

action = cmd(“migrate_remote.sh -p poolM -c 4 {path}”);
 condition { last_access > 1h }
 }
 ...
}

LAD'17 | 4-5 OCTOBER 2017

Re-organizing existing data (monitoring progress)

Commands to monitor migration progress

Remaining files to be relocated:

rbh-report --class-info=no_pool

fileclass, count, volume, spc_used, min_size, max_size, avg_size

 no_pool, 49750, 577.59 TB, 577.12 TB, 80.59 MB, 906.09 GB, 11.58 GB

Status of migration actions:

rbh-report --status-info=move2pool

move2pool.status, type, count, volume, spc_used, avg_size

 , symlink, 125, 8.01 KB, 420.00 KB, 66

 , dir, 71204, 461.71 MB, 463.00 MB, 6.64 KB

 , file, 15520, 2.18 TB, 2.18 TB, 4.29 GB

 ok, file, 802931, 1.95 PB, 1.94 PB, 2.54 GB

 failed, file, 812, 757.34 TB, 757.34 TB, 2.19 GB

LAD'17 | 4-5 OCTOBER 2017

Conclusion & perspectives

Even with RAID and HA, tragic situations can occur

The presented method makes it possible to keep your filesystem usable even
in such cases

Pool feature proved to be very convenient to achieve this
(stable, met our expectations)

Interest of using robinhood to move data between OST pools

Perspectives:

Use pools to manage multiple storage classes in a single namespace:

SSD pool, HDD pool...

Use similar robinhood policies to move data automatically between
pools (e.g. hot data to flash, cold data to HDD)

Even more perspectives with PFL, FLR...

Thank you for your attention !

Questions ?

DAM Île-de-FranceCommissariat à l’énergie atomique et aux énergies alternatives
CEA / DAM Ile-de-France| Bruyères-le-Châtel - 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

	Cover
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

