
Leveraging Fast Forward Collectives
To Improve Lustre* RAS

*Other names and brands may be claimed as the property of others.

RAS requirements

Robust handling of client, server, router and network failure

 Functionally transparent

 Minimal performance impact

 Accurate, prompt failure diagnosis

 Fast server fail-over & client fail-out

Scalability

 100,000s clients

 1,000s servers

Simple to administer

 Simple rules governing health and policy

2

Proposed RAS improvements

Primary fault diagnosis based on resilient collective health protocol

 Independent of storage service latency

 Scalable

 Conservative

 Prompt notification

 Simplified “catch-all” secondary diagnosis

Separate network & peer fault handling

 Simple retry on network failure

 Full recovery on peer failure

3

Fast Forward Collectives

Gossip

 Peer health monitoring

 Fault tolerant O(log n) state distribution

 Every round pick 1 random peer to update

 Vector of “last known alive” lamport clocks

 Peer alive == recent clock tick

 Query & notification APIs

 node_status_t gsp_query(lnet_nid_t node);

 int gsp_register(const lnet_nid_t* nodes, size_t n, callback_func);

3

1

4

2

3

4

4

4

4

2

4 4

3 3

4

Fast Forward Collectives

Collective RPC

 Arbitrary membership

 K-ary spanning trees over nodes & multiple members per NID (e.g. OSTs)

 Membership propagates root->leaves with request

 Single-shot & persistent groups

 Fast fail on member failure

 Idempotent – repeat until successful

 General purpose

 Callbacks at all stages of processing

 Simple to aggregate bulk incrementally or at root

5

Definitions & Assumptions

Definition

 RPC step: RPC request / bulk / RPC reply

Assumptions

 Reasonably bounded maximum network latency (seconds)

 Strict bounds on RPC request length and # in-flight per client

– Known maximum number of clients

– Requests buffered eagerly at servers

 Bounded # bulks & RPC replies in-flight across all servers

 Network communications with a live peer succeed 99.99% of the time

6

Health Monitoring

Gossip [targets][routers] health

 Direct notification of peer MDT, OST and router health

 1,000 servers, 10 targets/server, 1,000 routers

 4Hz gossip frequency => 15s gossip latency

Distributed client monitoring & notification

 Load balance client monitoring over directly connected routers/servers

 Monitors propagate client presence to servers and server status to clients

 Clients may establish server connections after presence propagated

 Periodically aggregate & broadcast client health info

 MDT0 initiates collectives

 Collectives broadcast client status
– Deltas normally / full client map when peers restart

Clients ClientsServers & Routers

Gossip + client status broadcast

Point-to-point client monitor/notify

7

Network fault handling

Make all RPC steps a round-trip

 Require ACK for RPC request, bulk PUT, RPC reply (bulk GET has REPLY anyway)

Make all RPC steps idempotent

 Discard duplicate RPC requests

 Register permanent match-all ME on bulk & RPC reply portals

 Matched last to guarantee ACK/REPLY for duplicate

Retry active RPC steps

 Promptly on notification of router failure

 After timeout (max congested network latency)

 Catch-all for point-to-point network failure
8

Peer fault handling

Assume peer healthy until notified otherwise

 Network fault handling deals with router & network failures

 Robust lock callbacks

 Large Fixed Timeouts catch complete network failure & zombies

 Major code simplification possible

 Mitigate zombies via internal health checks

Global client eviction

 Notify peers on decision to evict using same mechanism as client monitors

 Require client to reconnect to monitor before establishing new server connections

 Simplify SOM etc.
9

Summary

Health monitoring

 Leverage Fast Forward Collectives

 Primary diagnosis of peer failure

Round-trip RPC steps

 Positive handshake on successful communications

Clear separation of network v. peer failure handling

 Robust communications in the face of network/router failure

 Code simplification

10

