
Leveraging Fast Forward Collectives
To Improve Lustre* RAS

*Other names and brands may be claimed as the property of others.



RAS requirements

Robust handling of client, server, router and network failure

 Functionally transparent

 Minimal performance impact

 Accurate, prompt failure diagnosis

 Fast server fail-over & client fail-out

Scalability

 100,000s clients

 1,000s servers

Simple to administer

 Simple rules governing health and policy

2



Proposed RAS improvements

Primary fault diagnosis based on resilient collective health protocol

 Independent of storage service latency

 Scalable

 Conservative

 Prompt notification

 Simplified “catch-all” secondary diagnosis

Separate network & peer fault handling

 Simple retry on network failure

 Full recovery on peer failure

3



Fast Forward Collectives

Gossip

 Peer health monitoring

 Fault tolerant O(log n) state distribution

 Every round pick 1 random peer to update

 Vector of “last known alive” lamport clocks

 Peer alive == recent clock tick

 Query & notification APIs

 node_status_t gsp_query(lnet_nid_t node);

 int gsp_register(const lnet_nid_t* nodes, size_t n, callback_func);

3

1

4

2

3

4

4

4

4

2

4 4

3 3

4



Fast Forward Collectives

Collective RPC

 Arbitrary membership

 K-ary spanning trees over nodes & multiple members per NID (e.g. OSTs)

 Membership propagates root->leaves with request

 Single-shot & persistent groups 

 Fast fail on member failure

 Idempotent – repeat until successful

 General purpose

 Callbacks at all stages of processing

 Simple to aggregate bulk incrementally or at root

5



Definitions & Assumptions

Definition

 RPC step:  RPC request / bulk / RPC reply

Assumptions

 Reasonably bounded maximum network latency (seconds)

 Strict bounds on RPC request length and # in-flight per client

– Known maximum number of clients

– Requests buffered eagerly at servers

 Bounded # bulks & RPC replies in-flight across all servers

 Network communications with a live peer succeed 99.99% of the time

6



Health Monitoring

Gossip [targets][routers] health

 Direct notification of peer MDT, OST and router health

 1,000 servers, 10 targets/server, 1,000 routers

 4Hz gossip frequency => 15s gossip latency

Distributed client monitoring & notification

 Load balance client monitoring over directly connected routers/servers

 Monitors propagate client presence to servers and server status to clients

 Clients may establish server connections after presence propagated

 Periodically aggregate & broadcast client health info

 MDT0 initiates collectives

 Collectives broadcast client status
– Deltas normally / full client map when peers restart

Clients ClientsServers & Routers

Gossip + client status broadcast

Point-to-point client monitor/notify

7



Network fault handling

Make all RPC steps a round-trip

 Require ACK for RPC request, bulk PUT, RPC reply (bulk GET has REPLY anyway)

Make all RPC steps idempotent

 Discard duplicate RPC requests

 Register permanent match-all ME on bulk & RPC reply portals

 Matched last to guarantee ACK/REPLY for duplicate

Retry active RPC steps

 Promptly on notification of router failure

 After timeout (max congested network latency)

 Catch-all for point-to-point network failure
8



Peer fault handling

Assume peer healthy until notified otherwise

 Network fault handling deals with router & network failures

 Robust lock callbacks

 Large Fixed Timeouts catch complete network failure & zombies

 Major code simplification possible

 Mitigate zombies via internal health checks

Global client eviction

 Notify peers on decision to evict using same mechanism as client monitors

 Require client to reconnect to monitor before establishing new server connections

 Simplify SOM etc.
9



Summary

Health monitoring

 Leverage Fast Forward Collectives 

 Primary diagnosis of peer failure

Round-trip RPC steps

 Positive handshake on successful communications

Clear separation of network v. peer failure handling

 Robust communications in the face of network/router failure

 Code simplification

10




