
Tiered Data Management 
for Lustre
Enabling New Use Cases & Deployment Models

Olaf Weber
Master Technologist
HPC Data Management & Storage



– The information contained in this presentation is proprietary to 

Hewlett Packard Enterprise (HPE) and may contain forward-

looking information regarding products or services that are not yet 

available.

– Do not remove this slide from the presentation

– HPE does not warrant or represent that it will introduce any 

product to which the information relates

– The information contained herein is subject to change without 

notice

– HPE makes no warranties regarding the accuracy of this 

information

– The only warranties for HPE products and services are set forth in 

the express warranty statements accompanying such products and 

services

– Nothing herein should be construed as constituting an additional 

warranty

– HPE shall not be liable for technical or editorial errors or omissions 

contained herein

Disclaimer



The four Commandments of Data Management

1.Data remains useful far longer than expected.

2.Data must outlive the hardware on which it is stored.

3.Data must outlive the software that manages it.

4.Forward migration to new technology should always be an option.



What is Tiered Data Management?

4



Core Concepts
Data Tiers

5

Codes in 
Memory

Performance Tier
Lustre or Tier Zero FS

(active data form)

Capacity Tier
Backend Store

(dormant data form)

HPC codes require POSIX
Buffered or Direct I/O

MPI-IO libraries

Highest random I/O performance
Limited namespace (up to 100M)

Flexible or no data redundancy

Good streaming performance
Very large namespace (over 10B)

Strong data protection

Multi-site support
Geo replication & Backup

Cloud integration



– Data moves between Performance Tier and 
Backend Store

– Three operations on Performance Tier

– Put: copy data to Backend Store

– Punch: remove data from Performance Tier

– Get: restore data from Backend Store

– A database keeps track of data on Backend 
Store

– Policy Engine decides when data can be 
removed from Backend Store

6

Hierarchical Storage Management

Core Concepts

Put GetPunch

inode
extended

attributes

data



– Track all file metadata in a Metadata 
Database

– This includes file names

– This includes directory info

– Five operations on Performance Tier

– Put: copy data to Backend Store

– Punch: remove data from Performance Tier

– Get: restore data from Backend Store

– Destage: remove metadata from Performance 
Tier

– Stage: restore metadata to Performance Tier

7

Tiered Data Management

Core Concepts

Punch StageDestage

Put &

inode
extended

attributes

data



Hierarchical Storage Management vs Tiered Data Management

Data Migration Facility

– Filesystem is the metadata database

– Entire namespace is in filesystem

– Database does not have directory info

– File data is migrated transparently

– Policy engine drives put/punch/get

– Access drives get

– Migration leaves inodes in place

– Migration leaves extended attributes in place

Data Management Framework

– Separate Metadata Database for a filesystem

– Entire namespace is in Metadata Database

– Metadata Database does have directory info

– Object Database tracks all known objects

– File data is migrated transparently

– Policy engine drives put/punch/get

– Access drives get

– But only for Staged files

– Policy engine drives destage/stage

– Other processes can also drive destage/stage

– Destaging removes inodes

– Destaging removes extended attributes

8



Using Lustre as Performance Tier

9



Current Implementation

– Robinhood is the Policy Engine

– A Coordinator runs on the Lustre MDS

– The Coordinator drives the Copytool

– The DMF MDS and Data Movers are part 
of a CXFS cluster and Lustre clients

– DMF FID mapping database lives on the 
CXFS filesystem

– DMF Data Movers copy directly between 
the OSS nodes and the backend storage

– Put stages small files on the CXFS 
filesystem for performance

10

Data Migration Facility Architecture

Hierarchical Storage Management

Lustre Clients

OSS/OST OSS/OST OSS/OST

HSM Client Agent

Policy Engine

MDS/MDT

Coordinator

DMF Data Movers

Copytool
DMF MDS

CXFS Cluster

DMF
File
Data



Integrate more tightly with Lustre

– DMF Event Filter

– Consumes Lustre Changelog

– Handles HSM Coordinator requests

– Populates Asynchronous Events Queue

– Handles Synchronous Events Queue

– DMF Cluster nodes run

– Policy Engine

– Changelog Processor

– Sync Responder

– DMF Changelog Processor handles 
Asynchronous Events Queue

– DMF Sync Responder handles 
Synchronous Events Queue

– DMF cluster nodes direct the Data Movers

– DMF Data Movers are simple Lustre clients

11

Data Management Framework Architecture

Tiered Data Management

Lustre Clients

OSS/OST OSS/OST OSS/OST

MDS/MDT

Event Filter

DMF Data Movers

DMF
File
Data

Object Store

Metadata DB

DMF Cluster

Changelog Processor

Sync Responder

Policy Engine

Object DB

Coordinator



Optimizing Lustre for use as Performance Tier
Speed over Size

MDS / MDT

MDS

– Also runs the Event Filter

– Metadata performance is limited by speed of Changelog 
Consumption

– Use DNE2 to provide multiple MDSs

– Use Multi-Rail

– Single-socket with fast CPU may be best

MDT

– Aggressive destaging of inodes saves MDT space

– Use fastest affordable hardware: (NVMe) SSD

OSS / OST

OSS

– Use Multi-Rail

– Single-socket with fast CPU may be best

OST

– Use fastest affordable hardware: (NVMe) SSD

– Redundancy is less important

12



Using Tiered Data Management

13



– Advanced HSM

– Number of inodes is an issue on 
Performance Tier

– Full filesystem traversal is expensive

– Destage unneeded files

– Stage required files

– Backend Storage serves as an archive of 
Performance Tier

14

Hierarchical Storage Management with Fewer Inodes

… work Destage Stage

workDestageStagework

Destage Stage work …



– The Object Database supports versioning 
of files

– Each Put creates a new version

– Create file sets with matching versions

– Stage specific versions of files or a file set

– Applications need not be versioning-aware

15

Versioned Files and File sets

work

• Put

• V1

work

• Put

• V2

work

• Put

• V3

Stage 
V2

Work* Put V4



Create filesystems on an as-needed basis

– Destage entire Performance Tier filesystem

– Filesystem can be rebuilt from scratch

– Query Object Database to populate the 
filesystem’s Metadata Database

– Any object metadata is usable to select 
populace

– Add metadata tags to taste

– Multiple filesystems

– Centralized object database tracks data

– Per-filesystem metadata database tracks 
migration status

16

Dynamic Filesystems

mkfs

Stage

work

Destage



Job: Teal

• mkfs

• Stage

• work

• Destage

Job: Purple

• mkfs

• Stage

• work

• Destage

Job: Orange

• mkfs

• Stage

• work

• Destage

– Batch scheduler creates new a Dynamic 
Filesystem for each job

– Only files relevant for the job are Staged

– No accidental access to unrelated data

– No changes needed in Lustre, Linux, or 
applications

17

Per-Job Filesystems



– Multiple jobs run at the same time

– Multiple Dynamic Filesystems

– MDT/OST space is a schedulable resource

– Job scheduler manages

– CPU cores

– Memory

– MDT space

– OST space

– A way to simplify scheduling

– Each job gets one or more nodes

– Tie each MDT and OST space to a node

– Scheduling issues similar to NUMA-aware 
scheduling on big iron

18

Simultaneous Per-Job Filesystems

Lustre Clients

OSS/OSTOSS/OST OSS/OST

Job: Teal Job: Purple Job: Orange

MDS/MDT

DMF Data Movers

Object StoreObject DB

DMF Cluster

MDB MDB MDB



Each Dynamic Filesystem has its own

– Event Queues

– Daemons

– Metadata Database

– Tracks directory tree of this filesystem

– Tracks migration state of files in this filesystem

– As opposed to the global

– Object Database

– Object Store

– Recreating Purple Dynamic Filesystem

1. Object DB query creates Purple MDB

2. DMF creates Purple MDT, stages files

3. DMF directs Data Movers

4. DMF Data Movers get files into Purple OSTs

19

Fault Isolation

Lustre Clients

OSS/OSTOSS/OST OSS/OST

Job: Teal Job: Purple Job: Orange

MDS/MDT

DMF Data Movers

Object Store

Object DB

DMF Cluster

MDB MDB MDB

1

2

3

4



Performance Tier can be replaced

– Change to new supported filesystem type

– Migrating to new hardware

1. Destage all filesystems

2. Replace hardware

3. Stage on new hardware

20

Replacing Performance Tier

Lustre Clients

OSS/OST OSS/OSTMDS/MDT

DMF Data Movers

Object Store

Metadata DB

DMF Cluster

Object DB

OSS/OST OSS/OSTMDS/MDT

1

2

3



Lustre scales really well to large filesystems

– Migrating into Lustre filesystem

1. Add OSTs to obtain required capacity

2. Stage everything in the Lustre filesystems

3. Disconnect DMF systems

– Data remains available for use during and 
after this process

21

Lustre Prevents Lock-in to Proprietary Software

Lustre Clients

OSS/OST OSS/OSTMDS/MDT

DMF Data Movers

Object Store

Metadata DB

DMF Cluster

Object DB

OSS/OST OSS/OST

OSS/OST OSS/OST

OSS/OST OSS/OST

1

2

3



Conclusion

22



Status of Work

– Implementation on top of CXFS in Data Management Framework 7

– Implementation on top of Lustre planned for DMF 7.1

– There is an issue with FIDs changing when using DNE2 with multiple MDSs that needs to be sorted out

23



Summary

– Tiered Data Management is an evolutionary change from Hierarchical Storage Management

– It reduces the size of the managed filesystem

– This allows for faster hardware to be used

– Dynamic Filesystems enable new ways to use the stored data without changing applications or OS

– With its built-in scalability and parallelism Lustre is an excellent match for Performance Tier

24



Q&A

25



Thank you
Olaf Weber
olaf.weber@hpe.com

26


