
Oleg Drokin
green@Whamcloud.com

Writeback Cache for Lustre

mailto:green@Whamcloud.com


whamcloud.com

Current Lustre caching

►Data:
• Fully cached on reads and writes in face of no contention
• Really fast as a result (grant is another consideration)
►Metadata:
• Only reads are cached
• All modifications are sluggish as the result
• Even non modifications like opens are sluggish
►As a result – multiple proposals for extra caching were made
• Amongst them subtree locks
• PCC is another project aiming at this problem from another angle
o Fujitsu had a similar one in the past

2



whamcloud.com

So how hard metadata caching could really be

► I set out with a prototype to find what was easy to accomplish
► If we create a dir, we know 100% all the names inside
• Just get the exclusive lock and nobody else would interfere
• We could accumulate normal names
• Serve readdir out of dcache
• Even store file data totally in pagecache without talking to mds
• Ramfs of sorts
►Overall the idea sounds pretty simple, right?

3



whamcloud.com

Implementation notes

►Mkdir is a reint create RPC, no locks.
►Server actually has reint create handler, but it’s not used
►Making client to send mkdir as intent create is pretty easy
►Making server return EXclusive lock if the create succeeded is easy as well.
►Flag such directories on the client as “fully locally owned”

4



whamcloud.com

Magic begins

►For “fully locally owned” directories we can override everything
• All lookups are either in local cache or are safely negative
• All creates go straight to dcache and stay there
o Client side FID allocation allows for consistent FIDs even if we want to flush to 

server later
• All unlinks just remove dcache entries
• Same dir or subdir renames are dcache-only ops
• Hardlinks in this subtree is really easy too
• Stat just reads data from inode
• Attaching file data to locally owned files is pretty easy.

5



whamcloud.com

But what if the lock is cancelled

► Iterate over the directory entries in the cache
►For every entry do intent-create RPC with “I got the parent lock”
• We get EX lock back, for subdirs that means the subtree is preserved
• For files that means we get to keep our file data safely until we establish layout and 

grab proper data locks
• Other entries don’t care
• Hardlink is a major complication since we cannot do create
►Once all entries are done with – drop the lock and the directory is magically visible 

to all clients.
►This is a real easy conversion path back to shared access unlike other approaches.

6



whamcloud.com

EXclusive metadata lock – like a data lock

►Allows the client to operate on locked directories without deadlocks
• A hard requirement for the whole scheme
► Just like with data locks – we can send/execute metadata ops under metadata EX 

locks
►Every RPC that furnishes “parent EX lock” prolongs the lock so it does not time out 

prematurely

7



whamcloud.com

Data writeback handling

►We already have the data in the pagecache, but CLIO knows nothing about it.

►To assimilate data first we need the layout and data locks.

►We must enqueue the locks while still holding the exclusive layout lock so nothing 
can peek in the file

• Very similar to HSM restore
►Once we got the locks – simply add CLIO data structures to existing pages 

(convenient cl_page_find()-> cl_io_commit_async() )

• Would be better to be able to just do cl_lpage_alloc
• Thanks to Jinshan for guidance
►Once file reverts to normal Lustre file, with regular writeback

8



whamcloud.com

Results

►As expected, uncontended operations just fly at unbelievable speeds
• 10x-20x improvement in createmany performance on local VMs
• FPP mdtest with 16 clients – ~6M/sec cumulative ops
• Unpacking Linux kernel tarball – 10 seconds (vs 210s)
►Actual workloads improve too
• Building Lustre in VM – 25%+ improvement on idle servers
o Overloaded servers are not affecting WBC operations

• Building rhel7.4 kernel on real HW 4.5m (vs a hang on unpatched)
►Would really shine in interactive kind of workloads with congested servers

9



whamcloud.com

Limitations – “benchmark cache mode”

►Great “benchmark” workload handler
• Create X files, stat, remove -> 0 RPCs need to be sent

►Other workloads like AI/Genomics would benefit too
►No accounting (changelog)
►Bursty flushes on lock cancels instead of smoothed trickling out
►Operating on preexisting directories is complicated.

10



whamcloud.com

Another mode – write behind cache

►Every operation creates suitable RPC that is sent asynchronously
►Userspace gets control right away so they are not impacted
►Smooths server load – useful for real workloads
• Untar archive and it starts to trickle out right away
• We know that data we write WILL be used by other nodes
►No ‘cancelling of operations’, but changelogs become possible
►Easier to work with preexisting directories
• Read in the data into cache and get an EX lock, done.
• Readdir/readdir+ alike combining would help
• Decided by the server

11



whamcloud.com

Other possible improvement ways

►Compounding multiple operations into a single network RPC
• Now that we actually have string of operations cached
►DoM can get create+data sort of RPCs for small file writes
►Hooks for more permanent storage of cached data on clients
• Log-based fs of some sort? Just cachefs?
• Upcoming persistent client cache and client container images seem to be a great 

match here too

12



whamcloud.com

Prototype limitations

►No hardlinks
►No error handling
►DNE status unknown
►Based on current master for RHEL7 only
►No xattrs/posix ACLs
►No grants/limits/accounting
►Sync is noop
►No memory use limits
►Only “benchmark mode” implemented

13



whamcloud.com

Conclusion

►Many aspects are not as hard as they seemed at first
►Some parts are useful on their own
►Even limited implementations would have successful niches

►You can see my prototype patches linked from LU-10938

►Currently there’s no solid plans to turn this into a product, but I am sure parts of it 
will appear on various roadmaps soon.

14



Questions?


