
ddn.com ©2013 DataDirect Networks. All Rights Reserved.

A New Quality of Service (QoS) Policy for Lustre
Utilizing the Lustre Network Request Scheduler
(NRS) Framework

2013/09/17

Shuichi Ihara
DataDirect Networks Japan

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

Background: Why QoS?

▶  Lustre throughput and metadata performance scales very well
with the number of OSTs/OSSs and—with DNE—the number of
MDTs/MDSs

▶  Lustre performance is well balanced
▶  But, as of today, Lustre does not offer the option to “manage”

performance or to “limit” performance
▶  Lustre is increasingly entering application areas outside the

mainstream HPC with its large parallel application (“file-per-
process”) use cases

▶  Some of these use cases require system administrators to
manage (limit, increase, prioritize) performance

▶  Eventually, approaches to deal with these use cases will also
benefit mainstream HPC centers!

2

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

Quality of Service (QoS)

▶  Quality of Service (QoS) is a mechanism to ensure a
"guaranteed” performance

▶  QoS was developed mostly in the network world, and
especially, on TCP/IP networks, which pose specific QoS
challenges

▶  QoS features are available on many network hardware or
network management software products

▶  QoS is somewhat less common in the storage world, although
some (expensive) enterprise storage products claim QoS or
QoS-like features

3

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

LQS: A QoS Policy for Lustre

▶  We have developed a policy layer called “Lustre” QoS
(LQS) that can provide QoS by controlling the number of
RPCs handled on the Lustre servers

▶  LQS runs as a policy of the Network Request Scheduler
(NRS)

▶  Eventually, LQS limits Lustre performance by limiting the
number of bandwidth and/or metadata operations

4

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

The Network Request Scheduler (NRS)

▶  A new component of the PTLRPC service
▶  NRS works on the server side and allows handling of

incoming RPCs before passing them to the OSS/MDS
threads for the backend file system

▶  This framework, together with a few policy options, was
merged into the Lustre mainstream and has been available
since Lustre 2.4.0

▶  The NRS Framework is very flexible and it is fairly easy
and straightforward to add new policies

▶  Policies can manage RPCs based on NID and UID/GID/
JOBID, etc..

5

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

QoS Algorithms

▶  Many types of QoS algorithms have been developed over
the past few decades

▶  The Token Bucket Filter (TBF) is a major algorithm used in
general network systems
•  It's simple and easy to implement
• Many Ethernet switches and routers use TBF to enable QoS

features
• TBF can accommodate very small burst traffic, but is also OK for

long-term data transmission

6

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

The Token Bucket Filter (TBF)

7

Token
rate R(t)
 	

INPUT

Bucket depth B

Tokens replenished at rate R(t)	

OUTPUT
Transfer Rate O(t)

In some case, very
small burst traffic B	

When input data arrives, but if no
token available, it waits until
enough tokens are ready.	

O(t) ≤ R(t) + B
N input data per
N tokens	

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

TBF Implementation for Lustre

8

Dequeue
based on
deadlines

Token
buckets

FIFO
queues

Enqueue
based on ID

Incoming
RPC Tokens Handling

RPC

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

TBF patches for Lustre

▶  LU-3558 ptlrpc: Add the NRS TBF policy
Main TBF code for NRS-based policy

▶  LU-3495 ptlrpc: Add rate counter for request handling
New counters in /proc to show request handing

▶  LU-3494 libcfs: Add relocation function to libcfs heap
Added a function to efficiently change the rank of queue

9

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

High priority
“performance”
Lustre clients	

UseCase #1
Lustre QoS based on NIDs (Clients)

10

Lustre Server MDS/OSS	

..........	

LQS High priority Clients	

High bandwidth	
 Total available bandwidth	

Limited
(Lower)

bandwidth	

..........	

LQS Low priority Clients	

Submitted jobs	

..........	

UserA	

Job-X	
 Job-Y	

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

Low
bandwidth

	

High bandwidth

	

UseCase #2
Lustre QoS based on JOBID

11

Lustre Server MDS/OSS	

Clients	

Maximum Lustre bandwidth	

UserA	

..........	

..........	

UserB	

Submitted jobs	

UserA+JOB-X is high priority
of Lustre performance.	

Job-X	
 Job-Y	

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

How to use Lustre QoS

u  Change NRS policy to TBF with NID
lctl set_param ost.OSS.ost_io.nrs_policies="<NRS policy> <TBF argument>"
lctl set_param ost.OSS.ost_io.nrs_policies="tbf nid"

u  Set rule with classification and number of token rate
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start <TBF's rule name> {NID} <rate>"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start rule_client1 {192.168.1.1@o2ib} 1"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start rule_clients {192.168.1.[2-16]@o2ib} 10"

u  Change number of token rate
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="change <TBF's rule name> <new rate>"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="change rule_client1 100"

u  Stop a rule (delete)
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="stop <TBF's rule name>"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="stop rule_client1"

12

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

Lustre QoS for Clients
Test results

13

"dd" command to single OST from multiple clients with various QoS rules
(Write, 1MB IO, max_rpc_in_flright=32)

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

QoS for UID with Jobstats
Test result

14

Start JOBstats and changed NRS policy to TBF with JOBID
lctl set_param jobid_var=procname_uid
lctl set_param ost.OSS.ost_io.nrs_policies="tbf jobid"

Set rule with classification and number of token
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start <TBF's rule name> {JOBID} <rate>"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="start iozone_user1 {iozone.500} 1"

Change number of token
lctl set_param ost.OSS.ost_io.nrs_tbf_rule="change iozone_user1 X" (change X to 10,50 and 100)

Stop a rule (delete)
# lctl set_param ost.OSS.ost_io.nrs_tbf_rule="stop iozone_user1"	

start 	
 token=1	
 token=10	
 token=50	

token=100	

stop	
 default #token 	

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M
B

/s
ec
	

user1's(uid=500) iozone(1M, Write)

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

Conclusion

▶  We adapted a standard Token Bucket Filter (TBF) algorithm to
Lustre and implemented LQS, a QoS policy based on the Lustre
Network Request Scheduler (NRS) framework

▶  We demonstrated that it is possible to manage Lustre
performance selectively and with high accuracy, discriminating
by NID or JOBID. (We are still more testing!)

▶  As of today, this approach only supports simple QoS rules with
only a single discriminator present at any time
•  A rule with multiple discriminators appears possible, but is still under

investigation
•  Changes in the NRS framework itself may be necessary to implement

more complex policies with multiple discriminators

15

ddn.com ©2013 DataDirect Networks. All Rights Reserved.

Thank you!

16	

