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The goal of this presentation is to update the current status of the 
ZFS and Lustre* implementation in a Sys Admin prospective. 
Johann will cover the development status. 
§  Benefits of ZFS and Lustre* implementation 

§  Performance 

§  Sequential I/O 

§  Metadata 

§  Reliability 

§  Availability 
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Outline 
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ZFS is a robust, scalable file system with features not available in 
other file systems today. ZFS can enable cheaper storage solution 
for Lustre* and increase the reliability of data on the next 
generation of fat HDDs.  
§  Hybrid Storage Pool (ARC+L2ARC+ZIL) 

§  Copy on Write (COW)  

§  Checksum 

§  Always consistent on disk  

§  Snapshot and replication  

§  Resilvering  

§  Manageability  

§  Compression and deduplication 
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ZFS benefits 
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How do Lustre* and ZFS interact ? 

Lustre* depends on the “ZFS on Linux” implementation of ZFS 
§  Lustre* targets run on a local file system on Lustre* servers. Object Storage 

Device (OSD) layer supported are: 
§  ldiskfs (EXT4) is the commonly used driver 

§  ZFS is the 2nd use of the OSD layer based on OpenZFS implementation 

§  Lustre* targets can be different types (hybrid ldiskfs/ZFS is possible) 

§  Lustre* Clients are unaffected by the choice of OSD file system 

§  Lustre* ZFS is functional since Lustre* 2.4   
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Our LAB and partner’s PoC 

There is a strong interest in our partners and end user to test the 
Lustre* + ZFS combination. 
§  This work try to summarize the results from benchmarks run on the Intel’s HPC 

LAB in Swindon (UK) managed by Jamie Wilcox and early results from 
partner’s proof-of-concept 

§  Intel is actively improve the ZFS + Lustre* integration (see Johann deck) 

§  Intel Enterprise Edition for Linux will support ZFS in Q4 2014 
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Sequential I/O – LDISKFS vs RAID-Z2 

§  IOR results from 384 threads and an aggregate file size of 3TB 
§  Theoretical performance is 6.7 GB/sec ( 48x 4TB NL-SAS at 140MB/sec) 
§  16x OSTs for ldiskfs using Intel RAID cards and RAID5 with 4 HDD 
§  8x OSTs for RAID-Z2 using 8 HDD 
§  ldiskfs pays the penalty of fragmentation and misalignment confirmed by brw_stats for 

this uncommon configuration.  
§  ZFS’s write performance is in line with the expectations and take advantage of COW.  
§  ZFS’s read is limited by the small “record size” and concurrency 
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Sequential I/O – Where to improve? 
§  CPU frequency on OSS matter. Accurate design is necessary (+3Ghz) 

§  Increasing the record size to 16M. A record size of 128K doesn’t fit Lustre’s 
workload! 

§  Potentially the FIEMAP work on the Network Request Scheduler (NRS) can 
efficiently schedule a large number of requests better than what the ZFS code 
can do itself. 

§  Increase the number of concurrent reads in the OSD-ZFS layer 

§  Optimize ZFS I/O scheduler for Lustre* 

Parameter	   Default MIN	   Default MAX	  
zfs vdev sync READ	   10 10 
zfs vdev sync WRITE	   10 10 
zfs vdev async READ	   3 1 
zfs vdev async WRITE	   10 1 
zfs vdev resilvering scrubbing	   2 1 
zfs vdev scheduler	   noop 
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Metadata – LDISKFS vs ZFS 

The Metadata performance is comparable only on stats 
§  MDSRATE results from 32 threads, 3.2M files in 32 dirs  

§  ldiskfs using Intel RAID card with FastPath technology. RAID10 array with 4x 
Intel S3700 SSD 400GB 

§  ZFS (0.6.2) using a striped mirrored vdev with 4 Intel S3700 SSD 400GB 
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Metadata – ZFS’s Memory Management  

It’s critical tune the ZFS’s ARC_META_LIMIT parameter on the 
MDS in order to achieve decent results. 
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Metadata – Where to improve ? 

A lot of work is needed to improve the metadata performance. 
§  Increase ZAP indirect and leaf block size 

§  Better ARC_META memory management for Lustre’s workload 

§  Improve ZAP caching 

Compared to ldiskfs, ZFS has some benefits: 
§  Not limited to 4 billions of Lustre’s inode 

§  Better scalability in the code. ldiskfs metadata performance is limited by the 
size of the directory: leaf block updates will become more random as the 
directory gets larger. 
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Reliability – Is RAID dead? 
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§  MTTDL is safe using RAID with 
double parity 

§  Hard Error Rate (HER): when the 
disk can’t read a sector, disk 
failed and causes a RAID rebuild 

§  Probability of a second HER 
during rebuild is high with larger 
NL-SAS 

§  Because there are cables and 
electronics, storage channels are 
susceptible to Silent Data 
Corruption (SDC) 

 

Device	   Hard Error Rate in 
bits	  

Equivalent 
in PB’s	  

SATA Consumer	   10E14	   0.01	  
SATA/SAS Nearline Enterprise	   10E15	   0.11	  
Enterprise SAS/FC	   10E16	   1.11	  
LTO and some Enterprise SAS 
SSD’s	  

10E17	   11.10	  

Enterprise Tape or greater	   10E19	   1110.22	  

 	    	   Sustained Transfer Rate per Second for a Year	  
 	   SDC 

Rate	  
10 

GiB/s	  
100 

GiB/s	  
1 

TiB/s	  
10 

TiB/s	  
SAS/FC	   10E21	   0.0	   0.0	   0.3	   2.7	  

 	   10E20	   0.0	   0.3	   2.7	   27.1	  

 	   10E19	   0.3	   2.7	   27.1	   270.9	  

 	   10E18	   2.7	   27.1	   270.9	   2,708.9	  

SATA/IB 
Standard	  

10E17	   27.1	   270.9	   2,708.9	   27,089.2	  

 	   10E16	   270.9	   2,708.9	   27,089.2	   270,892.2	  

 	   10E15	   2,708.9	   27,089.2	   270,892.2	   2,708,921.8	  
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Reliability with ZFS 
§  ZFS only copies “live,” or relevant, blocks of data when creating mirrors or 

RAID groups. This means that it takes nearly zero time to create and “initialize” 
new RAID sets.  

§  Always consistent on disk (software bug or massive corruption?):  

§  FSCK is a challenge for a  RAID6 using 10x 6TB NL/SAS 

§  MDRAID need a rescan of the RAID array at each reboot 

§  Scrubbing:  

§  ZFS can do background scrubbing of data by reading all of the blocks and 
doing checksum comparison and correction. 

§  Resilvering 

§  ZFS addresses the rebuild resilvering “top-down” from the most important 
blocks in its tree to the least—only reconstructing blocks that matter and 
writing those on the new drive, and it verifies the validity of every block read 
using its checksums, stored in the “parent” blocks along the way. This is 
extremely significant for both efficiency and data integrity—especially as 
drives continue to grow. 
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Performance regression during repair 

Only READS are affected during repair. Resilvering and scrubbing 
are autotuned by the ZFS I/O scheduler. 
§  IOR results from 384 threads and an aggregate file size of 1.5TB 

§  RAID-Z2 using 7 HDD. 8 OSTs are available. 

§  Resilvering and Scrubbing on one OST during all the IOR run 
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Reliability – Where to improve ? 

 
§  Declustering ZFS 

§  Randomize distribution of RAIDZ redundancy groups and spares to have 
full bandwidth during resilvering. 

§  ZFS Event Daemon  
§  ZED can trap events and make actions.  

§  ZED is implemented in the latest version (0.6.3) of ZFS 

§  ZED can help to add hot spare disks automatically 

* Other names and brands may be claimed as the property of others. 



16 

Availability 

Lustre* depends on the “ZFS on Linux” implementation of ZFS 
§  Integration with Pacemaker/Corosync is not a problem 

§  Pools should be imported in a non-persistent way  
§  One script to import/export the pools 

§  One script to mount/unmount Lustre* 
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Conclusion 

ZFS can enable a safe and efficient software RAID solutions using 
JBODs. 

ZFS can guarantee a robust data protection without any special 
protocol (T10-PI).  

Sequential write performance are inline with the expectations. Intel 
and the ZFS community is working to improve performance. 

Evaluation of large (1TB+) SSD device on OST for L2ARC could 
be a nice next step for this work. 

Evaluation of “Enterprise” functionalities like DeDup and 
Compression. 
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