
The current status of the adoption of
ZFS* as backend file system for Lustre*:
an early evaluation
Gabriele Paciucci

EMEA Solution Architect

* Other names and brands may be claimed as the property of others.

The goal of this presentation is to update the current status of the
ZFS and Lustre* implementation in a Sys Admin prospective.
Johann will cover the development status.
§  Benefits of ZFS and Lustre* implementation

§  Performance

§  Sequential I/O

§  Metadata

§  Reliability

§  Availability

2

Outline

* Other names and brands may be claimed as the property of others.

ZFS is a robust, scalable file system with features not available in
other file systems today. ZFS can enable cheaper storage solution
for Lustre* and increase the reliability of data on the next
generation of fat HDDs.
§  Hybrid Storage Pool (ARC+L2ARC+ZIL)

§  Copy on Write (COW)

§  Checksum

§  Always consistent on disk

§  Snapshot and replication

§  Resilvering

§  Manageability

§  Compression and deduplication
3

ZFS benefits

* Other names and brands may be claimed as the property of others.

4

How do Lustre* and ZFS interact ?

Lustre* depends on the “ZFS on Linux” implementation of ZFS
§  Lustre* targets run on a local file system on Lustre* servers. Object Storage

Device (OSD) layer supported are:
§  ldiskfs (EXT4) is the commonly used driver

§  ZFS is the 2nd use of the OSD layer based on OpenZFS implementation

§  Lustre* targets can be different types (hybrid ldiskfs/ZFS is possible)

§  Lustre* Clients are unaffected by the choice of OSD file system

§  Lustre* ZFS is functional since Lustre* 2.4

* Other names and brands may be claimed as the property of others.

5

Our LAB and partner’s PoC

There is a strong interest in our partners and end user to test the
Lustre* + ZFS combination.
§  This work try to summarize the results from benchmarks run on the Intel’s HPC

LAB in Swindon (UK) managed by Jamie Wilcox and early results from
partner’s proof-of-concept

§  Intel is actively improve the ZFS + Lustre* integration (see Johann deck)

§  Intel Enterprise Edition for Linux will support ZFS in Q4 2014

* Other names and brands may be claimed as the property of others.

6

Management
Network

High Performance Data Network
(InfiniBand Mellanox FDR)

Metadata
Servers

Object Storage
Servers

Intel Manager for Lustre*

Object Storage
Servers

Lustre* Clients (16)

Object Storage
Targets (OSTs)

Object Storage
Targets (OSTs)

Metadata
Target (MDT)

Management
Target (MGT)

4x Intel S3700 400GB SSD

4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB

4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB

4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB

4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB
4x NL-SAS 4TB

2x E5 2643v2 3Ghz
128GB RAM

2x E5 2643v2 3Ghz
64GB RAM

§  Intel RAID cards for LDISKFS

§  RAID-Z2 for ZFS

RAID10 RAID10 MIRROR+ STRIPE

RAID5

RAID5

RAID5

RAID5

RAID5

RAID5

RAID5

RAID5

RAIDZ2

RAIDZ2

Lustre* server version 2.6.50
ZFS version 0.6.3

IEEL 2.0 as Lustre* client based on 2.5

* Other names and brands may be claimed as the property of others.

7

Sequential I/O – LDISKFS vs RAID-Z2

§  IOR results from 384 threads and an aggregate file size of 3TB
§  Theoretical performance is 6.7 GB/sec (48x 4TB NL-SAS at 140MB/sec)
§  16x OSTs for ldiskfs using Intel RAID cards and RAID5 with 4 HDD
§  8x OSTs for RAID-Z2 using 8 HDD
§  ldiskfs pays the penalty of fragmentation and misalignment confirmed by brw_stats for

this uncommon configuration.
§  ZFS’s write performance is in line with the expectations and take advantage of COW.
§  ZFS’s read is limited by the small “record size” and concurrency

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

WRITE	 READ	
MB/sec	

LDISKFS	 RAIDZ2	

8

Sequential I/O – Where to improve?
§  CPU frequency on OSS matter. Accurate design is necessary (+3Ghz)

§  Increasing the record size to 16M. A record size of 128K doesn’t fit Lustre’s
workload!

§  Potentially the FIEMAP work on the Network Request Scheduler (NRS) can
efficiently schedule a large number of requests better than what the ZFS code
can do itself.

§  Increase the number of concurrent reads in the OSD-ZFS layer

§  Optimize ZFS I/O scheduler for Lustre*

Parameter	 Default MIN	 Default MAX	
zfs vdev sync READ	 10 10
zfs vdev sync WRITE	 10 10
zfs vdev async READ	 3 1
zfs vdev async WRITE	 10 1
zfs vdev resilvering scrubbing	 2 1
zfs vdev scheduler	 noop

* Other names and brands may be claimed as the property of others.

9

Metadata – LDISKFS vs ZFS

The Metadata performance is comparable only on stats
§  MDSRATE results from 32 threads, 3.2M files in 32 dirs

§  ldiskfs using Intel RAID card with FastPath technology. RAID10 array with 4x
Intel S3700 SSD 400GB

§  ZFS (0.6.2) using a striped mirrored vdev with 4 Intel S3700 SSD 400GB

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

CREATE	 STAT	 UNLINK	 MKNOD	
ops/sec	

LDISKFS	 ZFS	

* Other names and brands may be claimed as the property of others.

10

Metadata – ZFS’s Memory Management

It’s critical tune the ZFS’s ARC_META_LIMIT parameter on the
MDS in order to achieve decent results.

ARC MAX SIZE ARC MAX SIZE

ARC_META LIMIT ARC_META LIMIT

ARC SIZE

ARC_META SIZE

ARC_META SIZE

ARC SIZE

CPU WAIT

CPU WAIT

ARC_META SIZE
NOT RESET

* Other names and brands may be claimed as the property of others.

11

Metadata – Where to improve ?

A lot of work is needed to improve the metadata performance.
§  Increase ZAP indirect and leaf block size

§  Better ARC_META memory management for Lustre’s workload

§  Improve ZAP caching

Compared to ldiskfs, ZFS has some benefits:
§  Not limited to 4 billions of Lustre’s inode

§  Better scalability in the code. ldiskfs metadata performance is limited by the
size of the directory: leaf block updates will become more random as the
directory gets larger.

* Other names and brands may be claimed as the property of others.

Reliability – Is RAID dead?

12

§  MTTDL is safe using RAID with
double parity

§  Hard Error Rate (HER): when the
disk can’t read a sector, disk
failed and causes a RAID rebuild

§  Probability of a second HER
during rebuild is high with larger
NL-SAS

§  Because there are cables and
electronics, storage channels are
susceptible to Silent Data
Corruption (SDC)

Device	 Hard Error Rate in
bits	

Equivalent
in PB’s	

SATA Consumer	 10E14	 0.01	
SATA/SAS Nearline Enterprise	 10E15	 0.11	
Enterprise SAS/FC	 10E16	 1.11	
LTO and some Enterprise SAS
SSD’s	

10E17	 11.10	

Enterprise Tape or greater	 10E19	 1110.22	

 	 	 Sustained Transfer Rate per Second for a Year	
 	 SDC

Rate	
10

GiB/s	
100

GiB/s	
1

TiB/s	
10

TiB/s	
SAS/FC	 10E21	 0.0	 0.0	 0.3	 2.7	

 	 10E20	 0.0	 0.3	 2.7	 27.1	

 	 10E19	 0.3	 2.7	 27.1	 270.9	

 	 10E18	 2.7	 27.1	 270.9	 2,708.9	

SATA/IB
Standard	

10E17	 27.1	 270.9	 2,708.9	 27,089.2	

 	 10E16	 270.9	 2,708.9	 27,089.2	 270,892.2	

 	 10E15	 2,708.9	 27,089.2	 270,892.2	 2,708,921.8	

* Other names and brands may be claimed as the property of others.

13

Reliability with ZFS
§  ZFS only copies “live,” or relevant, blocks of data when creating mirrors or

RAID groups. This means that it takes nearly zero time to create and “initialize”
new RAID sets.

§  Always consistent on disk (software bug or massive corruption?):

§  FSCK is a challenge for a RAID6 using 10x 6TB NL/SAS

§  MDRAID need a rescan of the RAID array at each reboot

§  Scrubbing:

§  ZFS can do background scrubbing of data by reading all of the blocks and
doing checksum comparison and correction.

§  Resilvering

§  ZFS addresses the rebuild resilvering “top-down” from the most important
blocks in its tree to the least—only reconstructing blocks that matter and
writing those on the new drive, and it verifies the validity of every block read
using its checksums, stored in the “parent” blocks along the way. This is
extremely significant for both efficiency and data integrity—especially as
drives continue to grow.

 * Other names and brands may be claimed as the property of others.

14

Performance regression during repair

Only READS are affected during repair. Resilvering and scrubbing
are autotuned by the ZFS I/O scheduler.
§  IOR results from 384 threads and an aggregate file size of 1.5TB

§  RAID-Z2 using 7 HDD. 8 OSTs are available.

§  Resilvering and Scrubbing on one OST during all the IOR run

0	

1000	

2000	

3000	

4000	

5000	

6000	

WRITE	 READ	
MB/sec	

BASELINE	 RESILVERING	 SCRUBBING	

-15%
-22%

* Other names and brands may be claimed as the property of others.

15

Reliability – Where to improve ?

§  Declustering ZFS

§  Randomize distribution of RAIDZ redundancy groups and spares to have
full bandwidth during resilvering.

§  ZFS Event Daemon
§  ZED can trap events and make actions.

§  ZED is implemented in the latest version (0.6.3) of ZFS

§  ZED can help to add hot spare disks automatically

* Other names and brands may be claimed as the property of others.

16

Availability

Lustre* depends on the “ZFS on Linux” implementation of ZFS
§  Integration with Pacemaker/Corosync is not a problem

§  Pools should be imported in a non-persistent way
§  One script to import/export the pools

§  One script to mount/unmount Lustre*

* Other names and brands may be claimed as the property of others.

17

Conclusion

ZFS can enable a safe and efficient software RAID solutions using
JBODs.

ZFS can guarantee a robust data protection without any special
protocol (T10-PI).

Sequential write performance are inline with the expectations. Intel
and the ZFS community is working to improve performance.

Evaluation of large (1TB+) SSD device on OST for L2ARC could
be a nice next step for this work.

Evaluation of “Enterprise” functionalities like DeDup and
Compression.

* Other names and brands may be claimed as the property of others.

