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Motivation

» Single thread I/O performance is important
« Single thread I/O is common even in parallel applications

* The time cost of single thread /O in parallel applications can'’t be
reduced by adding compute nodes

» The benefit of changing single thread I/O to multi-thread/distributed I/O
might not worth the effort because I/O is on the single file
» Good readahead algorithm is critical for read
performance especially for single thread read
 Latency of non-cached I/O is still high because RPC is still expensive

» Single thread I/O performance of Lustre is much slower
than the client’s total bandwidth

* The fast growing bandwidth of network and storage is enlarging the
gap
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Background

» Hardware specification has been improved a lot

* Memory size on client is becoming larger thus could support
readahead algorithm that is more aggressive

« CPU frequency stands still, but number of CPU cores keeps
on growing, so CPU cost is critical for single thread read

» Software improvements enable aggressive
readahead

« Page cache management of Lustre client has been updated
from private management (Lustre-1.x) to Linux kernel

(Lustre-2.x)

« Page cache management of Linux kernel is efficient and
smart enough to support aggressive readahead

 Fast read patches (LU-8149) reduce latency of cached read,
thus readahead has become even more important to read
performance
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Current readahead in Lustre

» Current readahead algorithm dates back to 2004
(Lustre-1.2 or ealier) and has been updated from
time to time but not replaced by new ones

_~ ll_readpage()

{ ll_readahead() to read

pages from OSTs
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Why current readahead needs
improvement?

» An estimation of the read speed

* 1/speed = (1 - cache_miss_rate) / cache_speed + cache_miss_rate /
none_cache_ speed

» cache_speed has been improved a lot by fast read patches

» Cache miss rate of current Lustre readahead is high
* A good readahead algorithm would reduce cache miss rate to zero

» Readahead of Lustre will only be triggered when cache miss, thus cache
miss rate will always lager than (size_per read / size_per_readahead)

» Lustre readahead window has some problems

* Even readahead window size is large, most of the window is behind the
accessing offset

 Readahead is not able to fill the OSC RPC slots

. ;I;]he bdandwidths of OSCs are not fully used even under heavy I/O of single
rea

» Codes of Lustre readahead are complex thus hard to tune or
improve
- Status of sequential mode and stride mode are mixed together
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Ondemand readahead of Linux kernel

» Ondemand readahead is the current algorithm
used by Linux kernel since Linux-2.6.20
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Ondemand readahead of Linux kernel

» Readahead happens in two cases

« Synchronous readahead happens on cache miss
o I/O will happen anyway, so synchronous readahead reads more
pages together in a single 1/0
» Asynchronous readahead happens on lookahead page

o The prefetched pages should be at least lookahead _size ahead of
current access offset.

o When the page with PG _readahead(RA) flag is being accessed, the
prefetched pages in the front are dropping to lookahead_size.

o In order to avoid future cache miss, do readahead when page with
RA flag is being accessed
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Ondemand readahead on Lustre

» We ported ondemand readahead algorithm to
Lustre

« Max readahead window is increased from 2MB to 40MB

« Single thread read performance with old readahead is about1.0
GB/s

» Single thread read performance with ondemand readahead is
about 1.4GB/s, 40% improvement

» But ondemand readahead is still not enough for
Lustre

* |t was designed/optimized for local file systems

* [ts maximum readahead window size is too small (<2MB)
* [t doesn’t detect stride read

* |t doesn't always try to prefetch in large 1O

* It is not aware of Lustre stripe and LDLM lock
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Design of Parallel-readahead

» Multi-thread prefetch

 Parallel prefetch: CPU speed limits the read performance if all readahead
is done by the read process

» Real asynchronous prefetch: Asynchronous readahead is done in a thread
pool rather than the read process
» Readahead trigger timing

» Synchronous readahead is done in the read process when cache miss
happens since the page is being waited

» Asynchronous readahead is triggered at the very beginning of read syscall
for time saving

* Asynchronous readahead is also triggered when read syscall makes large
progess
» Pattern detection
* Both sequential read and stride read are detected and speeded up

* The framework is extendable so that pattern detection and readahead
policies could be added in the future for patterns such as random read,
semisequential read, backward read, interleaved read, etc.
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Framework of Parallel-readahead
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11 Benchmark configuration

» All performance results are done in a Lustre file system
with all servers and client running on a single server
* 64 GB memory

* 500 GB SSD(SAMSUNG 850 EVO 500G SATA3)
The SSD can only provide bandwidth of about 545 MB/s

» Apply a patch that bypasses read on OSD (LU-7655)
* Lustre client could get over 4.5 GB/s read (fake) bandwidth

 This should be an environment which is very simple but suitable for
running readahead benchmarks

» Lustre version: IEEL3 on CentOS7
* Fast read patches are included

* CentOS7 can get more performance than CentOS6, 4.5 GB/s VS
3.3 GB/s

v
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12 Benchmarks: Single thread read

» One thread read 50 GB file with different 1/O sizes
* dd if=/lustre/file of=/dev/null bs=310_SIZE

GB/s
5

4.5
4
3.5 |
3 | 3x
2.5
2

1.5 ‘/__‘— === < <&
1

0.5

0
4096 8192 16384 32768 65536 131072 262144 524288 1048576

—-0ld Readahead -®Parallel Readahead 10 size

- o— e —— u

®
DDN © 2016 DataDirect Networks, Inc. *Othe r names and brai d s ma yb I aime d th p p rty of other: dd ' I l
Any statements ol p entatio und future events ect to chan g n CO

STORAGE



13 Benchmarks: Multiple thread read

» All threads read separate 50GB files at the same time
- dd if=/lustre/file_${thread_index} of=/dev/null bs=1048576 &

GB/s Well balanced

5 Thread number
] | | | l
4.5 L<I?"<l—l—|—._. 8
3.5 6
5 /0/ °
2.5
4
2/ \
1.5 / 5
1 1
0.5 Thread number ' ‘ :
0 ' ' ' ' ' ' ' O 05 1 15 2 25 3 35 4 45
1 2 3 4 5 6 7 8 GB/s
——(0ld Readahead ®Parallel Readahead Peformance of Threads with Parallel Readahead

® m
DDN © 2016 DataDirect Networks, Inc.*Othe r names and bra d s ma yb ' aime! d th p p iy @i G ddn CO

STORAGE

Any statements ol p entatio und future events ect to chan g



14 Benchmarks: Multiple thread stride read

» All threads read separate 50GB files at the same
time, read 1MB and then skip 1MB

Well balanced
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15 Benchmarks: Multiple thread stride read

» All (N) threads read separate 400/N GB files at the
same time, read 1MB and then skip 6MB
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Further work

» More benchmarks
* Random read
» Mixed patterns in a single thread
* Mixed patterns in multiple threads

 Real applications that are not only I/O intensive but also CPU
and memory intensive

» Combine pattern detection with lock ahead feature
(LU-6148)
 To improve access performance of shared file I/O from
multiple clients
» Single thread write improvement

» Client side latency is the main cause of slow single thread
write

 Patches that bypasses write on OSD(LU-7655) could simplify
benchmarking a lot
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Thank you!
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