Parallel-readahead:

»]»],'B anew readahead

STORAGE framework for Lustre

Li Xi, Shuichi Ihara

DataDirect Networks

Motivation

» Single thread I/O performance is important
« Single thread I/O is common even in parallel applications

* The time cost of single thread /O in parallel applications can'’t be
reduced by adding compute nodes

» The benefit of changing single thread I/O to multi-thread/distributed I/O
might not worth the effort because I/O is on the single file
» Good readahead algorithm is critical for read
performance especially for single thread read
 Latency of non-cached I/O is still high because RPC is still expensive

» Single thread I/O performance of Lustre is much slower
than the client’s total bandwidth

* The fast growing bandwidth of network and storage is enlarging the
gap

Read input on Compute on all Write output on
rankO ranks rankO

DDN
© 2016 DataDirect Networks, Inc Oh ctitt)dmvdbful med a hppyfh ddn Com

STORAGE "an ny stat ents or 1 p events are subject to chan g

Background

» Hardware specification has been improved a lot

* Memory size on client is becoming larger thus could support
readahead algorithm that is more aggressive

« CPU frequency stands still, but number of CPU cores keeps
on growing, so CPU cost is critical for single thread read

» Software improvements enable aggressive
readahead

« Page cache management of Lustre client has been updated
from private management (Lustre-1.x) to Linux kernel

(Lustre-2.x)

« Page cache management of Linux kernel is efficient and
smart enough to support aggressive readahead

 Fast read patches (LU-8149) reduce latency of cached read,
thus readahead has become even more important to read
performance

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra dmyb | med a hpp rty of other dd m
und futu evet subject to chan g n CO

Aytt torrp entatio

STORAGE

Current readahead in Lustre

» Current readahead algorithm dates back to 2004
(Lustre-1.2 or ealier) and has been updated from
time to time but not replaced by new ones

_~ ll_readpage()

{ ll_readahead() to read

pages from OSTs

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra d myb claimed a th p prty of other dd
ey e n.com

nd future events ect to chan g

STORAGE Any sta tements or re p

Why current readahead needs
improvement?

» An estimation of the read speed

* 1/speed = (1 - cache_miss_rate) / cache_speed + cache_miss_rate /
none_cache_ speed

» cache_speed has been improved a lot by fast read patches

» Cache miss rate of current Lustre readahead is high
* A good readahead algorithm would reduce cache miss rate to zero

» Readahead of Lustre will only be triggered when cache miss, thus cache
miss rate will always lager than (size_per read / size_per_readahead)

» Lustre readahead window has some problems

* Even readahead window size is large, most of the window is behind the
accessing offset

 Readahead is not able to fill the OSC RPC slots

. ;I;]he bdandwidths of OSCs are not fully used even under heavy I/O of single
rea

» Codes of Lustre readahead are complex thus hard to tune or
improve
- Status of sequential mode and stride mode are mixed together

®
DDN © 2016 DataDirect Networks, Inc. * Other names and bra dmyb Ilmd thppnyfth ddn Com

Any ttmentsorrp entatio und future events ect to chan g
STORAGE

Ondemand readahead of Linux kernel

» Ondemand readahead is the current algorithm
used by Linux kernel since Linux-2.6.20

— e . e e o

l Read pages and set RA
‘ Async readahead flag on the last but
$lookahead_size page

| :
! |

\ ‘ Copy page to user space /

Next
page

— O E— E— . . S B B B B B S e S

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra d myb claimed a th p prty of other dd
ey e n.com

nd future events ect to chan g

STORAGE Any sta tements or re p

Ondemand readahead of Linux kernel

» Readahead happens in two cases

« Synchronous readahead happens on cache miss
o I/O will happen anyway, so synchronous readahead reads more
pages together in a single 1/0
» Asynchronous readahead happens on lookahead page

o The prefetched pages should be at least lookahead _size ahead of
current access offset.

o When the page with PG _readahead(RA) flag is being accessed, the
prefetched pages in the front are dropping to lookahead_size.

o In order to avoid future cache miss, do readahead when page with
RA flag is being accessed

®
DDN © 2016 DataDirect Networks, Inc. * Other and bra d myb claimed a th p pny of other dd
ey e n.com

nd future events ect to chan g

STORAGE Any sta tements or re p

Ondemand readahead on Lustre

» We ported ondemand readahead algorithm to
Lustre

« Max readahead window is increased from 2MB to 40MB

« Single thread read performance with old readahead is about1.0
GB/s

» Single thread read performance with ondemand readahead is
about 1.4GB/s, 40% improvement

» But ondemand readahead is still not enough for
Lustre

* |t was designed/optimized for local file systems

* [ts maximum readahead window size is too small (<2MB)
* [t doesn’t detect stride read

* |t doesn't always try to prefetch in large 1O

* It is not aware of Lustre stripe and LDLM lock

DDN

STORAGE

Design of Parallel-readahead

» Multi-thread prefetch

 Parallel prefetch: CPU speed limits the read performance if all readahead
is done by the read process

» Real asynchronous prefetch: Asynchronous readahead is done in a thread
pool rather than the read process
» Readahead trigger timing

» Synchronous readahead is done in the read process when cache miss
happens since the page is being waited

» Asynchronous readahead is triggered at the very beginning of read syscall
for time saving

* Asynchronous readahead is also triggered when read syscall makes large
progess
» Pattern detection
* Both sequential read and stride read are detected and speeded up

* The framework is extendable so that pattern detection and readahead
policies could be added in the future for patterns such as random read,
semisequential read, backward read, interleaved read, etc.

®
DDN © 2016 DataDirect Networks, Inc. * Other names and bra dmyb Ilmd thppnyfth ddn Com

Any ttmentsorrp entatio und future events ect to chan g

STORAGE

Framework of Parallel-readahead

|
I Match sequential mod '
I sequential mode \\ Change RA window |! Readahead thread pool
I ‘1’ and submit async ,°
; L P
: Match stride mode 4 job f matched I \
.~ _ Tt _————————— e _7 Fetch async
s EEEE e s s e ~ readahead job
/ S \
/Y No l
I = Cache miss? ‘I .
| Skip pages outside
I No age is 1MB ahea Yes | é)prA?window
I ‘ Sync readahead ’ of RA wmdo’;/v start :
o I offset” , l
| N
page | ‘1’ v [Read pages
. Read pages Move RA window ahead asynchronously ,/
: synchronously and submit async job |
I | '
I I |
. |
\\ [Copy page to user space ’ ,’
e b . . . o - —_-—_— o 7

®
D D N © 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. d d n CO m

Any statements or representations around future events are subject to change.
STORAGE

11 Benchmark configuration

» All performance results are done in a Lustre file system
with all servers and client running on a single server
* 64 GB memory

* 500 GB SSD(SAMSUNG 850 EVO 500G SATA3)
The SSD can only provide bandwidth of about 545 MB/s

» Apply a patch that bypasses read on OSD (LU-7655)
* Lustre client could get over 4.5 GB/s read (fake) bandwidth

 This should be an environment which is very simple but suitable for
running readahead benchmarks

» Lustre version: IEEL3 on CentOS7
* Fast read patches are included

* CentOS7 can get more performance than CentOS6, 4.5 GB/s VS
3.3 GB/s

v

DDN
© 2016 DataDirect Networks, Inc. * Other ctit: dmvdbful med a hPP rty of other: ddn Com

events subject to hg

STORAGE Any s tt ents orrp

12 Benchmarks: Single thread read

» One thread read 50 GB file with different 1/O sizes
* dd if=/lustre/file of=/dev/null bs=310_SIZE

GB/s
5

4.5
4
3.5 |
3 | 3x
2.5
2

1.5 ‘/__‘— === < <&
1

0.5

0
4096 8192 16384 32768 65536 131072 262144 524288 1048576

—-0ld Readahead -®Parallel Readahead 10 size

- o— e —— u

®
DDN © 2016 DataDirect Networks, Inc. *Othe r names and brai d s ma yb I aime d th p p rty of other: dd ' I l
Any statements ol p entatio und future events ect to chan g n CO

STORAGE

13 Benchmarks: Multiple thread read

» All threads read separate 50GB files at the same time
- dd if=/lustre/file_${thread_index} of=/dev/null bs=1048576 &

GB/s Well balanced

5 Thread number
] | | | l
4.5 L<I?"<l—l—|—._. 8
3.5 6
5 /0/ °
2.5
4
2/ \
1.5 / 5
1 1
0.5 Thread number ' ‘ :
0 ' ' ' ' ' ' ' O 05 1 15 2 25 3 35 4 45
1 2 3 4 5 6 7 8 GB/s
——(0ld Readahead ®Parallel Readahead Peformance of Threads with Parallel Readahead

® m
DDN © 2016 DataDirect Networks, Inc.*Othe r names and bra d s ma yb ' aime! d th p p iy @i G ddn CO

STORAGE

Any statements ol p entatio und future events ect to chan g

14 Benchmarks: Multiple thread stride read

» All threads read separate 50GB files at the same
time, read 1MB and then skip 1MB

Well balanced

GB/s

- Thread number
4 Y4
3.5 6
3 5
25
2 r- 4
1.5 /'/ 3
1w Thread number >
05 read number W o e e ———————
0

1 2 3 4 5 6 7 8 0 051 15 2 25 3 35 4 45 5
GB/s

—— -
Parallel Readahead “#Old readahead Peformance of Threads with Parallel Readahead

®
DDN © 2016 DataDirect Networks, Inc.*Othe r names and bral d s ma yb I aime d th p p rty of other: ddn Com

Any statements ol p entatio und future events ect to chan g

STORAGE

15 Benchmarks: Multiple thread stride read

» All (N) threads read separate 400/N GB files at the
same time, read 1MB and then skip 6MB

G58/s Well balanced
Thread number
45 — * A |
' v 8 _ J
3.5 //. !
3
+ |
25 // _
2 > Y
1.5 / i
1w Y
0 | | | | | | | 0 05115 2 25 3 354 45 5
1 2 3 4 5 6 7 8 GB/s
——Parallel Readahead *#0Qld Readahead Peformance of Threads with Parallel Readaheac

®
DDN © 2016 DataDirect Networks, Inc. * Other names and bra dmyb Ilmd thpprtyfth ddn Com

ents o p entatio und future events ect to chan g

STORAGE Any statem

Further work

» More benchmarks
* Random read
» Mixed patterns in a single thread
* Mixed patterns in multiple threads

 Real applications that are not only I/O intensive but also CPU
and memory intensive

» Combine pattern detection with lock ahead feature
(LU-6148)
 To improve access performance of shared file I/O from
multiple clients
» Single thread write improvement

» Client side latency is the main cause of slow single thread
write

 Patches that bypasses write on OSD(LU-7655) could simplify
benchmarking a lot

DDN
© 2016 DataDirect Networks, Inc. * Other ctit:dmvdbful med a hppyfh ddn Com

Aytt torrp events subject to hg

STORAGE

Thank you!

®
D D N © 2016 DataDirect Networks, Inc. * Other names and brands may be claimed as the property of others. d d n CO m

Any statements or representations around future events are subject to change.
STORAGE

